File size: 7,479 Bytes
c24a176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import json
import math
from dataclasses import dataclass, field
from os import PathLike, cpu_count
from pathlib import Path
from typing import Any, Optional, TypeAlias

import colorcet as cc
import cv2
import numpy as np
import pandas as pd
import timm
import torch
from matplotlib.colors import LinearSegmentedColormap
from PIL import Image
from timm.data import create_transform, resolve_data_config
from timm.models import VisionTransformer
from torch import Tensor, nn
from torch.nn import functional as F
from torchvision import transforms as T

from .common import Heatmap, ImageLabels, LabelData, load_labels_hf, pil_ensure_rgb, pil_make_grid

# working dir, either file parent dir or cwd if interactive
work_dir = (Path(__file__).parent if "__file__" in locals() else Path.cwd()).resolve()
temp_dir = work_dir.joinpath("temp")
temp_dir.mkdir(exist_ok=True, parents=True)

# model cache
model_cache: dict[str, VisionTransformer] = {}
transform_cache: dict[str, T.Compose] = {}

# device to use
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class RGBtoBGR(nn.Module):
    def forward(self, x: Tensor) -> Tensor:
        if x.ndim == 4:
            return x[:, [2, 1, 0], :, :]
        return x[[2, 1, 0], :, :]


def model_device(model: nn.Module) -> torch.device:
    return next(model.parameters()).device


def load_model(repo_id: str) -> VisionTransformer:
    global model_cache

    if model_cache.get(repo_id, None) is None:
        # save model to cache
        model_cache[repo_id] = timm.create_model("hf-hub:" + repo_id, pretrained=True).eval().to(torch_device)

    return model_cache[repo_id]


def load_model_and_transform(repo_id: str) -> tuple[VisionTransformer, T.Compose]:
    global transform_cache
    global model_cache

    if model_cache.get(repo_id, None) is None:
        # save model to cache
        model_cache[repo_id] = timm.create_model("hf-hub:" + repo_id, pretrained=True).eval()
    model = model_cache[repo_id]

    if transform_cache.get(repo_id, None) is None:
        transforms = create_transform(**resolve_data_config(model.pretrained_cfg, model=model))
        # hack in the RGBtoBGR transform, save to cache
        transform_cache[repo_id] = T.Compose(transforms.transforms + [RGBtoBGR()])
    transform = transform_cache[repo_id]

    return model, transform


def get_tags(
    probs: Tensor,
    labels: LabelData,
    gen_threshold: float,
    char_threshold: float,
):
    # Convert indices+probs to labels
    probs = list(zip(labels.names, probs.numpy()))

    # First 4 labels are actually ratings
    rating_labels = dict([probs[i] for i in labels.rating])

    # General labels, pick any where prediction confidence > threshold
    gen_labels = [probs[i] for i in labels.general]
    gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
    gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))

    # Character labels, pick any where prediction confidence > threshold
    char_labels = [probs[i] for i in labels.character]
    char_labels = dict([x for x in char_labels if x[1] > char_threshold])
    char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))

    # Combine general and character labels, sort by confidence
    combined_names = [x for x in gen_labels]
    combined_names.extend([x for x in char_labels])

    # Convert to a string suitable for use as a training caption
    caption = ", ".join(combined_names).replace("(", "\(").replace(")", "\)")
    booru = caption.replace("_", " ")

    return caption, booru, rating_labels, char_labels, gen_labels


@torch.no_grad()
def render_heatmap(
    image: Tensor,
    gradients: Tensor,
    image_feats: Tensor,
    image_probs: Tensor,
    image_labels: list[str],
    cmap: LinearSegmentedColormap = cc.m_linear_bmy_10_95_c71,
    pos_embed_dim: int = 784,
    image_size: tuple[int, int] = (448, 448),
    font_args: dict = {
        "fontFace": cv2.FONT_HERSHEY_SIMPLEX,
        "fontScale": 1,
        "color": (255, 255, 255),
        "thickness": 2,
        "lineType": cv2.LINE_AA,
    },
    partial_rows: bool = True,
) -> tuple[list[Heatmap], Image.Image]:
    hmap_dim = int(math.sqrt(pos_embed_dim))

    image_hmaps = gradients.mean(2, keepdim=True).mul(image_feats.unsqueeze(0)).squeeze()
    image_hmaps = image_hmaps.mean(-1).reshape(len(image_labels), hmap_dim, hmap_dim)
    image_hmaps = image_hmaps.max(torch.zeros_like(image_hmaps))

    image_hmaps /= image_hmaps.reshape(image_hmaps.shape[0], -1).max(-1)[0].unsqueeze(-1).unsqueeze(-1)
    # normalize to 0-1
    image_hmaps = torch.stack([(x - x.min()) / (x.max() - x.min()) for x in image_hmaps]).unsqueeze(1)
    # interpolate to input image size
    image_hmaps = F.interpolate(image_hmaps, size=image_size, mode="bilinear").squeeze(1)

    hmap_imgs: list[Heatmap] = []
    for tag, hmap, score in zip(image_labels, image_hmaps, image_probs.cpu()):
        image_pixels = image.add(1).mul(127.5).squeeze().permute(1, 2, 0).cpu().numpy().astype(np.uint8)
        hmap_pixels = cmap(hmap.cpu().numpy(), bytes=True)[:, :, :3]

        hmap_cv2 = cv2.cvtColor(hmap_pixels, cv2.COLOR_RGB2BGR)
        hmap_image = cv2.addWeighted(image_pixels, 0.5, hmap_cv2, 0.5, 0)
        if tag is not None:
            cv2.putText(hmap_image, tag, (10, 30), **font_args)
            cv2.putText(hmap_image, f"{score:.3f}", org=(10, 60), **font_args)

        hmap_pil = Image.fromarray(cv2.cvtColor(hmap_image, cv2.COLOR_BGR2RGB))
        hmap_imgs.append(Heatmap(tag, score.item(), hmap_pil))

    hmap_imgs = sorted(hmap_imgs, key=lambda x: x.score, reverse=True)
    hmap_grid = pil_make_grid([x.image for x in hmap_imgs], partial_rows=partial_rows)

    return hmap_imgs, hmap_grid


def process_heatmap(
    model: VisionTransformer,
    image: Tensor,
    labels: LabelData,
    threshold: float = 0.5,
    partial_rows: bool = True,
) -> tuple[list[tuple[float, str, Image.Image]], Image.Image, ImageLabels]:
    torch_device = model_device(model)

    with torch.set_grad_enabled(True):
        features = model.forward_features(image.to(torch_device))
        probs = model.forward_head(features)
        probs = F.sigmoid(probs).squeeze(0)

        probs_mask = probs > threshold
        heatmap_probs = probs[probs_mask]

        label_indices = torch.nonzero(probs_mask, as_tuple=False).squeeze(1)
        image_labels = [labels.names[label_indices[i]] for i in range(len(label_indices))]

        eye = torch.eye(heatmap_probs.shape[0], device=torch_device)
        grads = torch.autograd.grad(
            outputs=heatmap_probs,
            inputs=features,
            grad_outputs=eye,
            is_grads_batched=True,
            retain_graph=True,
        )
        grads = grads[0].detach().requires_grad_(False)[:, 0, :, :].unsqueeze(1)

    with torch.set_grad_enabled(False):
        hmap_imgs, hmap_grid = render_heatmap(
            image=image,
            gradients=grads,
            image_feats=features,
            image_probs=heatmap_probs,
            image_labels=image_labels,
            partial_rows=partial_rows,
        )

        caption, booru, ratings, character, general = get_tags(
            probs=probs.cpu(),
            labels=labels,
            gen_threshold=threshold,
            char_threshold=threshold,
        )
        labels = ImageLabels(caption, booru, ratings, general, character)

    return hmap_imgs, hmap_grid, labels