Spaces:
Running
Running
File size: 4,986 Bytes
c24a176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import math
from dataclasses import dataclass
from functools import lru_cache
from pathlib import Path
from typing import Optional
import numpy as np
import pandas as pd
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from torch import Tensor, nn
@dataclass
class Heatmap:
label: str
score: float
image: Image.Image
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
character: list[np.int64]
@dataclass
class ImageLabels:
caption: str
booru: str
rating: dict[str, float]
general: dict[str, float]
character: dict[str, float]
@lru_cache(maxsize=5)
def load_labels_hf(
repo_id: str,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> LabelData:
try:
csv_path = hf_hub_download(
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
)
csv_path = Path(csv_path).resolve()
except HfHubHTTPError as e:
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
tag_data = LabelData(
names=df["name"].tolist(),
rating=list(np.where(df["category"] == 9)[0]),
general=list(np.where(df["category"] == 0)[0]),
character=list(np.where(df["category"] == 4)[0]),
)
return tag_data
def mcut_threshold(probs: np.ndarray) -> float:
"""
Maximum Cut Thresholding (MCut)
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
for Multi-label Classification. In 11th International Symposium, IDA 2012
(pp. 172-183).
"""
probs = probs[probs.argsort()[::-1]]
diffs = probs[:-1] - probs[1:]
idx = diffs.argmax()
thresh = (probs[idx] + probs[idx + 1]) / 2
return float(thresh)
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
# convert to RGB/RGBA if not already (deals with palette images etc.)
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
# convert RGBA to RGB with white background
if image.mode == "RGBA":
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
return image
def pil_pad_square(
image: Image.Image,
fill: tuple[int, int, int] = (255, 255, 255),
) -> Image.Image:
w, h = image.size
# get the largest dimension so we can pad to a square
px = max(image.size)
# pad to square with white background
canvas = Image.new("RGB", (px, px), fill)
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
return canvas
def preprocess_image(
image: Image.Image,
size_px: int | tuple[int, int],
upscale: bool = True,
) -> Image.Image:
"""
Preprocess an image to be square and centered on a white background.
"""
if isinstance(size_px, int):
size_px = (size_px, size_px)
# ensure RGB and pad to square
image = pil_ensure_rgb(image)
image = pil_pad_square(image)
# resize to target size
if image.size[0] < size_px[0] or image.size[1] < size_px[1]:
if upscale is False:
raise ValueError("Image is smaller than target size, and upscaling is disabled")
image = image.resize(size_px, Image.LANCZOS)
if image.size[0] > size_px[0] or image.size[1] > size_px[1]:
image.thumbnail(size_px, Image.BICUBIC)
return image
def pil_make_grid(
images: list[Image.Image],
max_cols: int = 8,
padding: int = 4,
bg_color: tuple[int, int, int] = (40, 42, 54), # dracula background color
partial_rows: bool = True,
) -> Image.Image:
n_cols = min(math.floor(math.sqrt(len(images))), max_cols)
n_rows = math.ceil(len(images) / n_cols)
# if the final row is not full and partial_rows is False, remove a row
if n_cols * n_rows > len(images) and not partial_rows:
n_rows -= 1
# assumes all images are same size
image_width, image_height = images[0].size
canvas_width = ((image_width + padding) * n_cols) + padding
canvas_height = ((image_height + padding) * n_rows) + padding
canvas = Image.new("RGB", (canvas_width, canvas_height), bg_color)
for i, img in enumerate(images):
x = (i % n_cols) * (image_width + padding) + padding
y = (i // n_cols) * (image_height + padding) + padding
canvas.paste(img, (x, y))
return canvas
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
|