File size: 2,132 Bytes
a72b612
8b139bf
a72b612
d97cfeb
 
f6ae938
8b139bf
d97cfeb
 
8b139bf
bfda109
 
a72b612
 
8b139bf
0135d09
d97cfeb
 
bfda109
d97cfeb
 
 
bfda109
d97cfeb
 
0135d09
d97cfeb
 
 
bfda109
d97cfeb
 
 
 
 
 
 
 
 
 
 
 
 
0135d09
d97cfeb
 
 
 
 
 
 
 
ea64bb3
8b139bf
 
ea64bb3
 
d97cfeb
 
8b139bf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pdfplumber
import pandas as pd
from io import BytesIO
import re
import gradio as gr

def extract_data_from_pdf(pdf_file):
    data = []
    po_number = None

    # Use pdfplumber with BytesIO for Gradio compatibility
    with pdfplumber.open(BytesIO(pdf_file.read())) as pdf:
        for page in pdf.pages:
            text = page.extract_text()

            # Extract PO number if available
            if po_number is None:
                po_match = re.search(r"Purchase Order : (\w+)", text)
                po_number = po_match.group(1) if po_match else "N/A"

            # Regex pattern to match the row data
            row_pattern = re.compile(
                r"(\d+)\s+(\d+)\s+(\w+)\s+(\d{4}-\d{2}-\d{2})\s+([\d.]+)\s+([\d.]+)\s+([\d.]+)"
            )

            # Extract matching rows
            for match in row_pattern.finditer(text):
                pos, item_code, unit, delivery_date, quantity, basic_price, amount = match.groups()
                sub_total_match = re.search(r"SUB TOTAL : ([\d.]+)", text)
                sub_total = sub_total_match.group(1) if sub_total_match else "0.0"

                data.append({
                    "Purchase Order": po_number,
                    "Pos.": pos,
                    "Item Code": item_code,
                    "Unit": unit,
                    "Delivery Date": delivery_date,
                    "Quantity": quantity,
                    "Basic Price": basic_price,
                    "Amount": amount,
                    "SUB TOTAL": sub_total
                })

    # Convert the data to a DataFrame and save to Excel
    df = pd.DataFrame(data)
    output = BytesIO()
    with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
        df.to_excel(writer, index=False, sheet_name="Extracted Data")
    output.seek(0)

    return output

# Updated Gradio Interface
iface = gr.Interface(
    fn=extract_data_from_pdf,
    inputs=gr.File(label="Upload PDF"),
    outputs=gr.File(label="Download Excel"),
    title="PDF Data Extractor",
    description="Extract structured data from a PDF and output it as an Excel file."
)

iface.launch()