File size: 3,162 Bytes
f1238a3
 
 
 
78153c4
f1238a3
 
 
 
 
 
 
 
78153c4
f1238a3
 
 
 
 
 
 
 
 
 
78153c4
f1238a3
 
 
 
 
 
 
 
 
78153c4
f1238a3
78153c4
f1238a3
 
 
 
 
 
 
 
 
 
 
 
 
78153c4
f1238a3
78153c4
f1238a3
 
 
 
 
 
 
 
78153c4
f1238a3
78153c4
f1238a3
 
 
 
 
 
78153c4
f1238a3
 
 
 
 
 
 
 
 
 
 
 
78153c4
f1238a3
78153c4
f1238a3
 
 
 
 
 
78153c4
f1238a3
78153c4
f1238a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63cacb1
 
78153c4
63cacb1
 
 
 
 
 
f1238a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#|default_exp app"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "from fastai.vision.all import *\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "learn = load_learner('model.pkl')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from fastbook import *\n",
    "urls = search_images_ddg('banjo',1)\n",
    "from fastdownload import download_url\n",
    "dest = 'banjo.jpg'\n",
    "download_url(urls[0], dest, show_progress=False)\n",
    "\n",
    "im = Image.open(dest)\n",
    "im.to_thumb(256,256)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "img = PILImage.create('banjo.jpg')\n",
    "img.thumbnail((224,224))\n",
    "img"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "learn.predict(img)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "categories = ('didgeridoo','tambourine','xylophone','acordian','alphorn','bagpipes','banjo','bongo drum','casaba','castanets','clarinet','clavichord','concertina','drums','dulcimer','flute','guiro','guitar','harmonica','harp','marakas','ocarina','piano','saxaphone','sitar','steel drum','trombone','trumpet','tuba','violin')\n",
    "def classify_image(img):\n",
    "    pred,idx,probs = learn.predict(img)\n",
    "    return dict(zip(categories,map(float,probs)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "classify_image(img)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "image = gr.inputs.Image(shape=(224,224))\n",
    "label=gr.outputs.Label()\n",
    "examples=['banjo.jpg']\n",
    "intf = gr.Interface(fn=classify_image,inputs=image,outputs=label,examples=examples)\n",
    "intf.launch(inline=False)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Export"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from nbdev.export import nb_export\n",
    "nb_export('app.ipynb')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}