Spaces:
Running
Running
File size: 12,876 Bytes
384d9d6 3477655 547518c 3477655 384d9d6 3477655 384d9d6 d0e1245 384d9d6 3477655 384d9d6 3477655 d6241cc 384d9d6 3477655 af33981 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 57594ac 3477655 384d9d6 3477655 384d9d6 3477655 57594ac 3477655 57594ac 3477655 57594ac 3477655 57594ac 3477655 57594ac 3477655 384d9d6 547518c 384d9d6 547518c 384d9d6 d6241cc 3477655 57594ac 3477655 57594ac 3477655 57594ac 547518c 57594ac 547518c f94d289 547518c 57594ac 3477655 57594ac 3477655 384d9d6 547518c 3477655 384d9d6 d6241cc 3477655 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 57594ac 3477655 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 d6241cc 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 384d9d6 3477655 275566f 3477655 275566f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
"""Streamlit app for Presidio."""
import logging
import os
import traceback
import dotenv
import pandas as pd
import streamlit as st
import streamlit.components.v1 as components
from annotated_text import annotated_text
from streamlit_tags import st_tags
from openai_fake_data_generator import OpenAIParams
from presidio_helpers import (
get_supported_entities,
analyze,
anonymize,
annotate,
create_fake_data,
analyzer_engine,
)
st.set_page_config(
page_title="Presidio demo",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
"About": "https://microsoft.github.io/presidio/",
},
)
dotenv.load_dotenv()
logger = logging.getLogger("presidio-streamlit")
allow_other_models = os.getenv("ALLOW_OTHER_MODELS", False)
# Sidebar
st.sidebar.header(
"""
PII De-Identification with [Microsoft Presidio](https://microsoft.github.io/presidio/)
"""
)
model_help_text = """
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair,
as well as service such as Azure Text Analytics PII.
"""
st_ta_key = st_ta_endpoint = ""
model_list = [
"spaCy/en_core_web_lg",
"flair/ner-english-large",
"HuggingFace/obi/deid_roberta_i2b2",
"HuggingFace/StanfordAIMI/stanford-deidentifier-base",
"stanza/en",
"Azure AI Language",
"Other",
]
if not allow_other_models:
model_list.pop()
# Select model
st_model = st.sidebar.selectbox(
"NER model package",
model_list,
index=2,
help=model_help_text,
)
# Extract model package.
st_model_package = st_model.split("/")[0]
# Remove package prefix (if needed)
st_model = (
st_model
if st_model_package.lower() not in ("spacy", "stanza", "huggingface")
else "/".join(st_model.split("/")[1:])
)
if st_model == "Other":
st_model_package = st.sidebar.selectbox(
"NER model OSS package", options=["spaCy", "stanza", "Flair", "HuggingFace"]
)
st_model = st.sidebar.text_input(f"NER model name", value="")
if st_model == "Azure AI Language":
st_ta_key = st.sidebar.text_input(
f"Azure AI Language key", value=os.getenv("TA_KEY", ""), type="password"
)
st_ta_endpoint = st.sidebar.text_input(
f"Azure AI Language endpoint",
value=os.getenv("TA_ENDPOINT", default=""),
help="For more info: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/personally-identifiable-information/overview", # noqa: E501
)
st.sidebar.warning("Note: Models might take some time to download. ")
analyzer_params = (st_model_package, st_model, st_ta_key, st_ta_endpoint)
logger.debug(f"analyzer_params: {analyzer_params}")
st_operator = st.sidebar.selectbox(
"De-identification approach",
["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"],
index=1,
help="""
Select which manipulation to the text is requested after PII has been identified.\n
- Redact: Completely remove the PII text\n
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n
- Synthesize: Replace with fake values (requires an OpenAI key)\n
- Highlight: Shows the original text with PII highlighted in colors\n
- Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n
- Hash: Replaces with the hash of the PII string\n
- Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed
""",
)
st_mask_char = "*"
st_number_of_chars = 15
st_encrypt_key = "WmZq4t7w!z%C&F)J"
open_ai_params = None
logger.debug(f"st_operator: {st_operator}")
def set_up_openai_synthesis():
"""Set up the OpenAI API key and model for text synthesis."""
if os.getenv("OPENAI_TYPE", default="openai") == "Azure":
openai_api_type = "azure"
st_openai_api_base = st.sidebar.text_input(
"Azure OpenAI base URL",
value=os.getenv("AZURE_OPENAI_ENDPOINT", default=""),
)
openai_key = os.getenv("AZURE_OPENAI_KEY", default="")
st_deployment_id = st.sidebar.text_input(
"Deployment name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT", default="")
)
st_openai_version = st.sidebar.text_input(
"OpenAI version",
value=os.getenv("OPENAI_API_VERSION", default="2023-05-15"),
)
else:
openai_api_type = "openai"
st_openai_version = st_openai_api_base = None
st_deployment_id = ""
openai_key = os.getenv("OPENAI_KEY", default="")
st_openai_key = st.sidebar.text_input(
"OPENAI_KEY",
value=openai_key,
help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.",
type="password",
)
st_openai_model = st.sidebar.text_input(
"OpenAI model for text synthesis",
value=os.getenv("OPENAI_MODEL", default="gpt-3.5-turbo-instruct"),
help="See more here: https://platform.openai.com/docs/models/",
)
return (
openai_api_type,
st_openai_api_base,
st_deployment_id,
st_openai_version,
st_openai_key,
st_openai_model,
)
if st_operator == "mask":
st_number_of_chars = st.sidebar.number_input(
"number of chars", value=st_number_of_chars, min_value=0, max_value=100
)
st_mask_char = st.sidebar.text_input(
"Mask character", value=st_mask_char, max_chars=1
)
elif st_operator == "encrypt":
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
elif st_operator == "synthesize":
(
openai_api_type,
st_openai_api_base,
st_deployment_id,
st_openai_version,
st_openai_key,
st_openai_model,
) = set_up_openai_synthesis()
open_ai_params = OpenAIParams(
openai_key=st_openai_key,
model=st_openai_model,
api_base=st_openai_api_base,
deployment_id=st_deployment_id,
api_version=st_openai_version,
api_type=openai_api_type,
)
st_threshold = st.sidebar.slider(
label="Acceptance threshold",
min_value=0.0,
max_value=1.0,
value=0.35,
help="Define the threshold for accepting a detection as PII. See more here: ",
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations to findings",
value=False,
help="Add the decision process to the output table. "
"More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/",
)
# Allow and deny lists
st_deny_allow_expander = st.sidebar.expander(
"Allowlists and denylists",
expanded=False,
)
with st_deny_allow_expander:
st_allow_list = st_tags(
label="Add words to the allowlist", text="Enter word and press enter."
)
st.caption(
"Allowlists contain words that are not considered PII, but are detected as such."
)
st_deny_list = st_tags(
label="Add words to the denylist", text="Enter word and press enter."
)
st.caption(
"Denylists contain words that are considered PII, but are not detected as such."
)
# Main panel
with st.expander("About this demo", expanded=False):
st.info(
"""Presidio is an open source customizable framework for PII detection and de-identification.
\n\n[Code](https://aka.ms/presidio) |
[Tutorial](https://microsoft.github.io/presidio/tutorial/) |
[Installation](https://microsoft.github.io/presidio/installation/) |
[FAQ](https://microsoft.github.io/presidio/faq/) |
[Feedback](https://forms.office.com/r/9ufyYjfDaY) |"""
)
st.info(
"""
Use this demo to:
- Experiment with different off-the-shelf models and NLP packages.
- Explore the different de-identification options, including redaction, masking, encryption and more.
- Generate synthetic text with Microsoft Presidio and OpenAI.
- Configure allow and deny lists.
This demo website shows some of Presidio's capabilities.
[Visit our website](https://microsoft.github.io/presidio) for more info,
samples and deployment options.
"""
)
st.markdown(
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)
analyzer_load_state = st.info("Starting Presidio analyzer...")
analyzer_load_state.empty()
# Read default text
with open("demo_text.txt") as f:
demo_text = f.readlines()
# Create two columns for before and after
col1, col2 = st.columns(2)
# Before:
col1.subheader("Input")
st_text = col1.text_area(
label="Enter text", value="".join(demo_text), height=400, key="text_input"
)
try:
# Choose entities
st_entities_expander = st.sidebar.expander("Choose entities to look for")
st_entities = st_entities_expander.multiselect(
label="Which entities to look for?",
options=get_supported_entities(*analyzer_params),
default=list(get_supported_entities(*analyzer_params)),
help="Limit the list of PII entities detected. "
"This list is dynamic and based on the NER model and registered recognizers. "
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
)
# Before
analyzer_load_state = st.info("Starting Presidio analyzer...")
analyzer = analyzer_engine(*analyzer_params)
analyzer_load_state.empty()
st_analyze_results = analyze(
*analyzer_params,
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
allow_list=st_allow_list,
deny_list=st_deny_list,
)
# After
if st_operator not in ("highlight", "synthesize"):
with col2:
st.subheader(f"Output")
st_anonymize_results = anonymize(
text=st_text,
operator=st_operator,
mask_char=st_mask_char,
number_of_chars=st_number_of_chars,
encrypt_key=st_encrypt_key,
analyze_results=st_analyze_results,
)
st.text_area(
label="De-identified", value=st_anonymize_results.text, height=400
)
elif st_operator == "synthesize":
with col2:
st.subheader(f"OpenAI Generated output")
fake_data = create_fake_data(
st_text,
st_analyze_results,
open_ai_params,
)
st.text_area(label="Synthetic data", value=fake_data, height=400)
else:
st.subheader("Highlighted")
annotated_tokens = annotate(text=st_text, analyze_results=st_analyze_results)
# annotated_tokens
annotated_text(*annotated_tokens)
# table result
st.subheader(
"Findings"
if not st_return_decision_process
else "Findings with decision factors"
)
if st_analyze_results:
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
{
"entity_type": "Entity type",
"text": "Text",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results]
if st_return_decision_process:
analysis_explanation_df = pd.DataFrame.from_records(
[r.analysis_explanation.to_dict() for r in st_analyze_results]
)
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
st.text("No findings")
except Exception as e:
print(e)
traceback.print_exc()
st.error(e)
components.html(
"""
<script type="text/javascript">
(function(c,l,a,r,i,t,y){
c[a]=c[a]||function(){(c[a].q=c[a].q||[]).push(arguments)};
t=l.createElement(r);t.async=1;t.src="https://www.clarity.ms/tag/"+i;
y=l.getElementsByTagName(r)[0];y.parentNode.insertBefore(t,y);
})(window, document, "clarity", "script", "h7f8bp42n8");
</script>
"""
)
|