File size: 23,550 Bytes
4bac75f
 
 
 
 
 
 
 
 
61e64f4
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74d07e
 
 
 
 
4bac75f
 
 
 
 
c74d07e
4bac75f
c74d07e
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74d07e
 
4bac75f
 
c74d07e
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74d07e
4bac75f
 
 
7e46876
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7c6ea
5d63776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7c6ea
 
 
 
 
 
4bac75f
 
7e46876
 
 
4bac75f
c74d07e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bac75f
7e46876
 
 
 
 
 
 
 
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74d07e
4bac75f
 
 
 
 
 
 
 
 
c74d07e
4bac75f
 
 
 
 
 
 
 
 
3d76fdb
a16a00a
c74d07e
 
4bac75f
 
 
 
 
3d76fdb
 
 
4bac75f
 
 
a16a00a
 
 
 
 
 
4bac75f
c74d07e
 
 
 
 
61e64f4
 
 
 
 
 
 
 
 
 
 
 
3d76fdb
 
61e64f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74d07e
 
61e64f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc78655
4bac75f
 
 
 
 
 
 
8c11599
dc7c6ea
4bac75f
 
3d76fdb
00bf946
7e46876
4bac75f
 
 
 
 
 
 
c74d07e
4bac75f
 
 
 
 
 
 
 
 
c74d07e
 
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
7e46876
4bac75f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e09c4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import gradio as gr
import base64
import os
from openai import OpenAI
import json
from PIL import Image
import io
from settings_mgr import generate_download_settings_js, generate_upload_settings_js
from chat_export import import_history, get_export_js
from types import SimpleNamespace

from doc2json import process_docx
from code_exec import eval_restricted_script

dump_controls = False
log_to_console = False

temp_files = []

def encode_image(image_data):
    """Generates a prefix for image base64 data in the required format for the
    four known image formats: png, jpeg, gif, and webp.

    Args:
    image_data: The image data, encoded in base64.

    Returns:
    A string containing the prefix.
    """

    # Get the first few bytes of the image data.
    magic_number = image_data[:4]
  
    # Check the magic number to determine the image type.
    if magic_number.startswith(b'\x89PNG'):
        image_type = 'png'
    elif magic_number.startswith(b'\xFF\xD8'):
        image_type = 'jpeg'
    elif magic_number.startswith(b'GIF89a'):
        image_type = 'gif'
    elif magic_number.startswith(b'RIFF'):
        if image_data[8:12] == b'WEBP':
            image_type = 'webp'
        else:
            # Unknown image type.
            raise Exception("Unknown image type")
    else:
        # Unknown image type.
        raise Exception("Unknown image type")

    return f"data:image/{image_type};base64,{base64.b64encode(image_data).decode('utf-8')}"

def process_pdf(pdf_fn: str):
    with open(pdf_fn, "rb") as pdf_file:
        base64_string = base64.b64encode(pdf_file.read()).decode("utf-8")
    return [{"type": "input_file", "filename": os.path.basename(pdf_fn), 
        "file_data": f"data:application/pdf;base64,{base64_string}"}]

def encode_file(fn: str) -> list:
    user_msg_parts = []

    if fn.endswith(".docx"):
        user_msg_parts.append({"type": "input_text", "text": process_docx(fn)})
    elif fn.endswith(".pdf"):
        user_msg_parts.extend(process_pdf(fn))
    else:
        with open(fn, mode="rb") as f:
            content = f.read()

        isImage = False
        if isinstance(content, bytes):
            try:
                # try to add as image
                content = encode_image(content)
                isImage = True
            except:
                # not an image, try text
                content = content.decode('utf-8', 'replace')
        else:
            content = str(content)

        if isImage:
            user_msg_parts.append({"type": "input_image",
                                "image_url": content})
        else:
            fn = os.path.basename(fn)
            user_msg_parts.append({"type": "input_text", "text": f"```{fn}\n{content}\n```"})

    return user_msg_parts

def undo(history):
    history.pop()
    return history

def dump(history):
    return str(history)

def load_settings():  
    # Dummy Python function, actual loading is done in JS  
    pass  

def save_settings(acc, sec, prompt, temp, tokens, model):  
    # Dummy Python function, actual saving is done in JS  
    pass  

def process_values_js():
    return """
    () => {
        return ["oai_key", "system_prompt"];
    }
    """

def bot(message, history, oai_key, system_prompt, temperature, max_tokens, model, python_use, web_search):
    try:
        client = OpenAI(
            api_key=oai_key
        )

        if model == "whisper":
            result = ""
            whisper_prompt = system_prompt
            for msg in history:
                content = msg["content"]
                if msg["role"] == "user":
                    if type(content) is tuple:
                        pass
                    else:
                        whisper_prompt += f"\n{content}"
                if msg["role"] == "assistant":
                        whisper_prompt += f"\n{content}"

            if message["text"]:
                whisper_prompt += message["text"]
            if message.files:
                for file in message.files:
                    audio_fn = os.path.basename(file.path)
                    with open(file.path, "rb") as f:
                        transcription = client.audio.transcriptions.create(
                            model="whisper-1", 
                            prompt=whisper_prompt,
                            file=f,
                            response_format="text"
                            )
                    whisper_prompt += f"\n{transcription}"
                    result += f"\n``` transcript {audio_fn}\n {transcription}\n```"
            
            yield result

        elif model == "gpt-image-1":
            if message.get("files"):
                image_files = []
                for file in message["files"]:
                    image_files.append(open(file, "rb"))

                response = client.images.edit(
                    model=model,
                    image=image_files,
                    prompt=message["text"],
                    quality="high"
                )
                for f in image_files:
                    f.close()
            else:
                response = client.images.generate(
                    model=model,
                    prompt=message["text"],
                    quality="high",
                    moderation="low"
                )
            b64data = response.data[0].b64_json
            img_bytes = base64.b64decode(b64data)
            pil_img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
            yield gr.ChatMessage(
                role="assistant",
                content=gr.Image(type="pil", value=pil_img)
            )
        else:
            tools = []
            if python_use:
                tools.append({
                    "type": "function",
                    "name": "eval_python",
                    "description": "Evaluate a simple script written in a conservative, restricted subset of Python."
                                "Note: Augmented assignments, in-place operations (e.g., +=, -=), lambdas (e.g. list comprehensions) are not supported. "
                                "Use regular assignments and operations instead. Only 'import math' is allowed. "
                                "Returns: unquoted results without HTML encoding.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "python_source_code": {
                                "type": "string",
                                "description": "The Python script that will run in a RestrictedPython context. "
                                            "Avoid using augmented assignments or in-place operations (+=, -=, etc.), as well as lambdas (e.g. list comprehensions). "
                                            "Use regular assignments and operations instead. Only 'import math' is allowed. Results need to be reported through print()."
                            }
                        },
                        "required": ["python_source_code"]
                    }
                })
            if web_search:
                tools.append({
                    "type": "web_search",
                    "search_context_size": "high"
                    })
            if not tools:
                tools = None

            if log_to_console:
                print(f"bot history: {str(history)}")

            history_openai_format = []
            user_msg_parts = []

            if system_prompt:
                if not model.startswith("o"):
                    role = "system"
                else:
                    role = "developer"

                    if not system_prompt.startswith("Formatting re-enabled"):
                        system_prompt = "Formatting re-enabled\n" + system_prompt
                history_openai_format.append({"role": role, "content": system_prompt})

            for msg in history:
                role = msg["role"]
                content = msg["content"]

                if role == "user":
                    if isinstance(content, gr.File) or isinstance(content, gr.Image):
                        user_msg_parts.extend(encode_file(content.value['path']))
                    elif isinstance(content, tuple):
                        user_msg_parts.extend(encode_file(content[0]))
                    else:
                        user_msg_parts.append({"type": "input_text", "text": content})

                if role == "assistant":
                    if user_msg_parts:
                        history_openai_format.append({"role": "user", "content": user_msg_parts})
                        user_msg_parts = []

                    history_openai_format.append({"role": "assistant", "content": content})

            if message["text"]:
                user_msg_parts.append({"type": "input_text", "text": message["text"]})
            if message["files"]:
                for file in message["files"]:
                    user_msg_parts.extend(encode_file(file))
            history_openai_format.append({"role": "user", "content": user_msg_parts})
            user_msg_parts = []

            if log_to_console:
                print(f"br_prompt: {str(history_openai_format)}")

            if model in ["o1", "o1-high", "o1-pro", "o1-2024-12-17", "o3-mini", "o3-mini-high", "o4-mini", "o4-mini-high",
                         "o3", "o3-high"]:
                reasoner = True

                # reasoning effort
                high = False
                if model == "o1-high":
                    model = "o1"
                    high = True
                if model == "o1-pro":
                    model = "o1-pro"
                    high = True
                elif model == "o3-mini-high":
                    model = "o3-mini"
                    high = True
                elif model == "o4-mini-high":
                    model = "o4-mini"
                    high = True
                elif model == "o3-high":
                    model = "o3"
                    high = True
            else:
                reasoner = False

            whole_response = ""
            loop_tool_calling = True
            while loop_tool_calling:
                request_params = {
                    "model": model,
                    "input": history_openai_format,
                    "store": False
                }
                if reasoner:
                    request_params["reasoning"] = {"effort": "high" if high else "medium"}
                else:
                    request_params["temperature"] = temperature
                if tools:
                    request_params["tools"] = tools
                    request_params["tool_choice"] = "auto"
                if max_tokens > 0:
                    request_params["max_output_tokens"] = max_tokens

                try:
                    stream = client.responses.create(stream=True, **request_params)
                    have_stream = True
                except Exception as e:
                    # fallback to non‑streaming; wrap the single full response in a fake "completed" event
                    # this happens with o3 via un-verified OpenAI accounts
                    response = client.responses.create(stream=False, **request_params)
                    stream = iter([SimpleNamespace(type="response.completed", response=response)])
                    have_stream = False

                loop_tool_calling = False
                for event in stream:
                    if event.type == "response.output_text.delta":
                        whole_response += event.delta
                        yield whole_response
                    elif event.type == "response.completed":
                        response = event.response
                        outputs = response.output

                        for output in outputs:
                            if output.type == "message":
                                for part in output.content:
                                    if part.type == "output_text":
                                        if not have_stream:
                                            # response text was not collected through streaming events, so get it here
                                            whole_response += part.text
                                            yield whole_response

                                        anns = part.annotations
                                        if anns:
                                            link_lines = []
                                            for ann in anns:
                                                if ann.type == "url_citation":
                                                    url = ann.url
                                                    title = ann.title
                                                    link_lines.append(f"- [{title}]({url})")
                                            if link_lines:
                                                link_lines = list(dict.fromkeys(link_lines))
                                                whole_response += "\n\n**Citations:**\n" + "\n".join(link_lines)
                                                yield whole_response

                            elif output.type == "function_call":
                                if output.name == "eval_python":
                                    try:
                                        history_openai_format.append({
                                            "type": "function_call",
                                            "name": output.name,
                                            "arguments": output.arguments,
                                            "call_id": output.call_id
                                        })

                                        parsed_args = json.loads(output.arguments)
                                        tool_script = parsed_args.get("python_source_code", "")

                                        whole_response += f"\n``` script\n{tool_script}\n```\n"
                                        yield whole_response

                                        tool_result = eval_restricted_script(tool_script)

                                        whole_response += f"\n``` result\n{tool_result if not tool_result['success'] else tool_result['prints']}\n```\n"
                                        yield whole_response

                                        history_openai_format.append({
                                            "type": "function_call_output",
                                            "call_id": output.call_id,
                                            "output": json.dumps(tool_result)
                                        })
                                    except Exception as e:
                                        history_openai_format.append({
                                            "type": "function_call_output",
                                            "call_id": output.call_id,
                                            "output": {
                                                    "toolResult": {
                                                        "content": [{"text":  e.args[0]}],
                                                        "status": 'error'
                                                    }
                                            }
                                        })

                                        whole_response += f"\n``` error\n{e.args[0]}\n```\n"
                                        yield whole_response
                                else:
                                        history_openai_format.append(outputs)

                                loop_tool_calling = True
                        
                        if log_to_console:
                            print(f"usage: {event.usage}")
                    elif event.type == "response.incomplete":
                        gr.Warning(f"Incomplete response, reason: {event.response.incomplete_details.reason}")
                        yield whole_response

        if log_to_console:
            print(f"br_result: {str(history)}")

    except Exception as e:
        raise gr.Error(f"Error: {str(e)}")

def import_history_guarded(oai_key, history, file):
    # check credentials first
    try:
        client = OpenAI(api_key=oai_key)
        client.models.retrieve("gpt-4o")
    except Exception as e:
        raise gr.Error(f"OpenAI login error: {str(e)}")

    # actual import
    return import_history(history, file)

with gr.Blocks(delete_cache=(86400, 86400)) as demo:
    gr.Markdown("# OpenAI™️ Chat (Nils' Version™️)")
    with gr.Accordion("Startup"):
        gr.Markdown("""Use of this interface permitted under the terms and conditions of the 
                    [MIT license](https://github.com/ndurner/oai_chat/blob/main/LICENSE).
                    Third party terms and conditions apply, particularly
                    those of the LLM vendor (OpenAI) and hosting provider (Hugging Face). This app and the AI models may make mistakes, so verify any outputs.""")

        oai_key = gr.Textbox(label="OpenAI API Key", elem_id="oai_key")
        model = gr.Dropdown(label="Model", value="gpt-4.1", allow_custom_value=True, elem_id="model",
                            choices=["gpt-4o", "gpt-4.1", "gpt-4.5-preview", "o3", "o3-high", "o1-pro", "o1-high", "o1-mini", "o1", "o3-mini-high", "o3-mini", "o4-mini", "o4-mini-high", "chatgpt-4o-latest", "gpt-4o-mini", "gpt-4-turbo", "gpt-4", "whisper", "gpt-image-1"])
        system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System/Developer Prompt", lines=3, max_lines=250, elem_id="system_prompt")  
        temp = gr.Slider(0, 2, label="Temperature", elem_id="temp", value=1)
        max_tokens = gr.Slider(0, 16384, label="Max. Tokens", elem_id="max_tokens", value=0)
        python_use = gr.Checkbox(label="Python Use", value=False)
        web_search = gr.Checkbox(label="Web Search", value=False)
        save_button = gr.Button("Save Settings")  
        load_button = gr.Button("Load Settings")  
        dl_settings_button = gr.Button("Download Settings")
        ul_settings_button = gr.Button("Upload Settings")

        load_button.click(load_settings, js="""  
            () => {  
                let elems = ['#oai_key textarea', '#system_prompt textarea', '#temp input', '#max_tokens input', '#model'];
                elems.forEach(elem => {
                    let item = document.querySelector(elem);
                    let event = new InputEvent('input', { bubbles: true });
                    item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';
                    item.dispatchEvent(event);
                });
            }  
        """)

        save_button.click(save_settings, [oai_key, system_prompt, temp, max_tokens, model], js="""  
            (oai, sys, temp, ntok, model) => {  
                localStorage.setItem('oai_key', oai);  
                localStorage.setItem('system_prompt', sys);  
                localStorage.setItem('temp', document.querySelector('#temp input').value);  
                localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);  
                localStorage.setItem('model', model);  
            }  
        """) 

        control_ids = [('oai_key', '#oai_key textarea'),
                       ('system_prompt', '#system_prompt textarea'),
                       ('temp', '#temp input'),
                       ('max_tokens', '#max_tokens input'),
                       ('model', '#model')]
        controls = [oai_key, system_prompt, temp, max_tokens, model, python_use, web_search]

        dl_settings_button.click(None, controls, js=generate_download_settings_js("oai_chat_settings.bin", control_ids))
        ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids))

    chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, autofocus = False, type = "messages")
    chat.textbox.file_count = "multiple"
    chat.textbox.max_plain_text_length = 2**31
    chatbot = chat.chatbot
    chatbot.show_copy_button = True
    chatbot.height = 450

    if dump_controls:
        with gr.Row():
            dmp_btn = gr.Button("Dump")
            txt_dmp = gr.Textbox("Dump")
            dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])

    with gr.Accordion("Import/Export", open = False):
        import_button = gr.UploadButton("History Import")
        export_button = gr.Button("History Export")
        export_button.click(lambda: None, [chatbot, system_prompt], js=get_export_js())
        dl_button = gr.Button("File download")
        dl_button.click(lambda: None, [chatbot], js="""
            (chat_history) => {
                const languageToExt = {
                    'python': 'py',
                    'javascript': 'js',
                    'typescript': 'ts',
                    'csharp': 'cs',
                    'ruby': 'rb',
                    'shell': 'sh',
                    'bash': 'sh',
                    'markdown': 'md',
                    'yaml': 'yml',
                    'rust': 'rs',
                    'golang': 'go',
                    'kotlin': 'kt'
                };

                const contentRegex = /```(?:([^\\n]+)?\\n)?([\\s\\S]*?)```/;
                const match = contentRegex.exec(chat_history[chat_history.length - 1][1]);
                
                if (match && match[2]) {
                    const specifier = match[1] ? match[1].trim() : '';
                    const content = match[2];
                    
                    let filename = 'download';
                    let fileExtension = 'txt'; // default

                    if (specifier) {
                        if (specifier.includes('.')) {
                            // If specifier contains a dot, treat it as a filename
                            const parts = specifier.split('.');
                            filename = parts[0];
                            fileExtension = parts[1];
                        } else {
                            // Use mapping if exists, otherwise use specifier itself
                            const langLower = specifier.toLowerCase();
                            fileExtension = languageToExt[langLower] || langLower;
                            filename = 'code';
                        }
                    }

                    const blob = new Blob([content], {type: 'text/plain'});
                    const url = URL.createObjectURL(blob);
                    const a = document.createElement('a');
                    a.href = url;
                    a.download = `${filename}.${fileExtension}`;
                    document.body.appendChild(a);
                    a.click();
                    document.body.removeChild(a);
                    URL.revokeObjectURL(url);
                }
            }
        """)
        import_button.upload(import_history_guarded, 
                            inputs=[oai_key, chatbot, import_button], 
                            outputs=[chatbot, system_prompt])

demo.unload(lambda: [os.remove(file) for file in temp_files])
demo.queue(default_concurrency_limit = None).launch()