File size: 17,362 Bytes
32ad276 1cfc216 32ad276 03f0948 e8c6a19 dede9df 61c26f2 32ad276 e6ad240 32ad276 825811f 1cfc216 32ad276 dede9df 32ad276 0008662 32ad276 0008662 32ad276 0008662 32ad276 03f0948 0008662 43b6937 8ba76ed f131994 43b6937 f131994 e02c8c1 f131994 cd77ffb e02c8c1 cd77ffb 43b6937 9bebec0 ba38317 9bebec0 43b6937 8ba76ed dede9df 43b6937 e02c8c1 8ba76ed 43b6937 ba38317 bce44b2 43b6937 32ad276 e8c6a19 142adef e8c6a19 4ec2d84 e8c6a19 7433885 0008662 2c20531 0f9705d 32ad276 0008662 f2279e4 ba38317 77a2ecf 0008662 26ba62d 93b8c98 32ad276 61c26f2 32ad276 0008662 32ad276 0008662 32ad276 0008662 32ad276 61c26f2 e02c8c1 8ba76ed e02c8c1 32ad276 e8c6a19 679fce2 4ec2d84 e8c6a19 679fce2 7a53e3e 679fce2 7a53e3e 679fce2 7a53e3e 679fce2 4ec2d84 e8c6a19 825811f e3e6f8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import gradio as gr
import base64
import os
from openai import OpenAI
import json
import fitz
from PIL import Image
import io
from settings_mgr import generate_download_settings_js, generate_upload_settings_js
from doc2json import process_docx
dump_controls = False
log_to_console = False
temp_files = []
def encode_image(image_data):
"""Generates a prefix for image base64 data in the required format for the
four known image formats: png, jpeg, gif, and webp.
Args:
image_data: The image data, encoded in base64.
Returns:
A string containing the prefix.
"""
# Get the first few bytes of the image data.
magic_number = image_data[:4]
# Check the magic number to determine the image type.
if magic_number.startswith(b'\x89PNG'):
image_type = 'png'
elif magic_number.startswith(b'\xFF\xD8'):
image_type = 'jpeg'
elif magic_number.startswith(b'GIF89a'):
image_type = 'gif'
elif magic_number.startswith(b'RIFF'):
if image_data[8:12] == b'WEBP':
image_type = 'webp'
else:
# Unknown image type.
raise Exception("Unknown image type")
else:
# Unknown image type.
raise Exception("Unknown image type")
return f"data:image/{image_type};base64,{base64.b64encode(image_data).decode('utf-8')}"
def process_pdf_img(pdf_fn: str):
pdf = fitz.open(pdf_fn)
message_parts = []
for page in pdf.pages():
# Create a transformation matrix for rendering at the calculated scale
mat = fitz.Matrix(0.6, 0.6)
# Render the page to a pixmap
pix = page.get_pixmap(matrix=mat, alpha=False)
# Convert pixmap to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Encode image to base64
base64_encoded = base64.b64encode(img_byte_arr).decode('utf-8')
# Construct the data URL
image_url = f"data:image/png;base64,{base64_encoded}"
# Append the message part
message_parts.append({
"type": "text",
"text": f"Page {page.number} of file '{pdf_fn}'"
})
message_parts.append({
"type": "image_url",
"image_url": {
"url": image_url,
"detail": "high"
}
})
pdf.close()
return message_parts
def encode_file(fn: str) -> list:
user_msg_parts = []
if fn.endswith(".docx"):
user_msg_parts.append({"type": "text", "text": process_docx(fn)})
elif fn.endswith(".pdf"):
user_msg_parts.extend(process_pdf_img(fn))
else:
with open(fn, mode="rb") as f:
content = f.read()
isImage = False
if isinstance(content, bytes):
try:
# try to add as image
content = encode_image(content)
isImage = True
except:
# not an image, try text
content = content.decode('utf-8', 'replace')
else:
content = str(content)
if isImage:
user_msg_parts.append({"type": "image_url",
"image_url":{"url": content}})
else:
user_msg_parts.append({"type": "text", "text": content})
return user_msg_parts
def undo(history):
history.pop()
return history
def dump(history):
return str(history)
def load_settings():
# Dummy Python function, actual loading is done in JS
pass
def save_settings(acc, sec, prompt, temp, tokens, model):
# Dummy Python function, actual saving is done in JS
pass
def process_values_js():
return """
() => {
return ["oai_key", "system_prompt", "seed"];
}
"""
def bot(message, history, oai_key, system_prompt, seed, temperature, max_tokens, model):
try:
client = OpenAI(
api_key=oai_key
)
if model == "whisper":
result = ""
whisper_prompt = system_prompt
for human, assi in history:
if human is not None:
if type(human) is tuple:
pass
else:
whisper_prompt += f"\n{human}"
if assi is not None:
whisper_prompt += f"\n{assi}"
if message["text"]:
whisper_prompt += message["text"]
if message.files:
for file in message.files:
audio_fn = os.path.basename(file.path)
with open(file.path, "rb") as f:
transcription = client.audio.transcriptions.create(
model="whisper-1",
prompt=whisper_prompt,
file=f,
response_format="text"
)
whisper_prompt += f"\n{transcription}"
result += f"\n``` transcript {audio_fn}\n {transcription}\n```"
yield result
elif model == "dall-e-3":
response = client.images.generate(
model=model,
prompt=message["text"],
size="1792x1024",
quality="hd",
n=1,
)
yield gr.Image(response.data[0].url)
else:
seed_i = None
if seed:
seed_i = int(seed)
if log_to_console:
print(f"bot history: {str(history)}")
history_openai_format = []
user_msg_parts = []
if system_prompt:
if not model.startswith("o1"):
role = "system"
else:
role = "user"
history_openai_format.append({"role": role, "content": system_prompt})
for human, assi in history:
if human is not None:
if type(human) is tuple:
user_msg_parts.extend(encode_file(human[0]))
else:
user_msg_parts.append({"type": "text", "text": human})
if assi is not None:
if user_msg_parts:
history_openai_format.append({"role": "user", "content": user_msg_parts})
user_msg_parts = []
history_openai_format.append({"role": "assistant", "content": assi})
if message["text"]:
user_msg_parts.append({"type": "text", "text": message["text"]})
if message["files"]:
for file in message["files"]:
user_msg_parts.extend(encode_file(file))
history_openai_format.append({"role": "user", "content": user_msg_parts})
user_msg_parts = []
if log_to_console:
print(f"br_prompt: {str(history_openai_format)}")
if model.startswith("o1"):
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
seed=seed_i,
)
yield response.choices[0].message.content
if log_to_console:
print(f"usage: {response.usage}")
else:
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=temperature,
seed=seed_i,
max_tokens=max_tokens,
stream=True,
stream_options={"include_usage": True}
)
partial_response=""
for chunk in response:
if chunk.choices:
txt = ""
for choice in chunk.choices:
cont = choice.delta.content
if cont:
txt += cont
partial_response += txt
yield partial_response
if chunk.usage and log_to_console:
print(f"usage: {chunk.usage}")
if log_to_console:
print(f"br_result: {str(history)}")
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
def import_history(history, file):
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
os.remove(file.name)
# Deserialize the JSON content
import_data = json.loads(content)
# Check if 'history' key exists for backward compatibility
if 'history' in import_data:
history = import_data['history']
system_prompt.value = import_data.get('system_prompt', '') # Set default if not present
else:
# Assume it's an old format with only history data
history = import_data
return history, system_prompt.value # Return system prompt value to be set in the UI
with gr.Blocks(delete_cache=(86400, 86400)) as demo:
gr.Markdown("# OAI Chat (Nils' Version™️)")
with gr.Accordion("Startup"):
gr.Markdown("""Use of this interface permitted under the terms and conditions of the
[MIT license](https://github.com/ndurner/oai_chat/blob/main/LICENSE).
Third party terms and conditions apply, particularly
those of the LLM vendor (OpenAI) and hosting provider (Hugging Face). This app and the AI models may make mistakes, so verify any outputs.""")
oai_key = gr.Textbox(label="OpenAI API Key", elem_id="oai_key")
model = gr.Dropdown(label="Model", value="gpt-4-turbo", allow_custom_value=True, elem_id="model",
choices=["gpt-4-turbo", "gpt-4o-2024-05-13", "gpt-4o-2024-11-20", "o1-mini", "o1", "chatgpt-4o-latest", "gpt-4o", "gpt-4o-mini", "gpt-4-turbo-preview", "gpt-4-1106-preview", "gpt-4", "gpt-4-vision-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-1106", "whisper", "dall-e-3"])
system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt")
seed = gr.Textbox(label="Seed", elem_id="seed")
temp = gr.Slider(0, 2, label="Temperature", elem_id="temp", value=1)
max_tokens = gr.Slider(1, 16384, label="Max. Tokens", elem_id="max_tokens", value=800)
save_button = gr.Button("Save Settings")
load_button = gr.Button("Load Settings")
dl_settings_button = gr.Button("Download Settings")
ul_settings_button = gr.Button("Upload Settings")
load_button.click(load_settings, js="""
() => {
let elems = ['#oai_key textarea', '#system_prompt textarea', '#seed textarea', '#temp input', '#max_tokens input', '#model'];
elems.forEach(elem => {
let item = document.querySelector(elem);
let event = new InputEvent('input', { bubbles: true });
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';
item.dispatchEvent(event);
});
}
""")
save_button.click(save_settings, [oai_key, system_prompt, seed, temp, max_tokens, model], js="""
(oai, sys, seed, temp, ntok, model) => {
localStorage.setItem('oai_key', oai);
localStorage.setItem('system_prompt', sys);
localStorage.setItem('seed', seed);
localStorage.setItem('temp', document.querySelector('#temp input').value);
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);
localStorage.setItem('model', model);
}
""")
control_ids = [('oai_key', '#oai_key textarea'),
('system_prompt', '#system_prompt textarea'),
('seed', '#seed textarea'),
('temp', '#temp input'),
('max_tokens', '#max_tokens input'),
('model', '#model')]
controls = [oai_key, system_prompt, seed, temp, max_tokens, model]
dl_settings_button.click(None, controls, js=generate_download_settings_js("oai_chat_settings.bin", control_ids))
ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids))
chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, autofocus = False)
chat.textbox.file_count = "multiple"
chatbot = chat.chatbot
chatbot.show_copy_button = True
chatbot.height = 450
if dump_controls:
with gr.Row():
dmp_btn = gr.Button("Dump")
txt_dmp = gr.Textbox("Dump")
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])
with gr.Accordion("Import/Export", open = False):
import_button = gr.UploadButton("History Import")
export_button = gr.Button("History Export")
export_button.click(lambda: None, [chatbot, system_prompt], js="""
(chat_history, system_prompt) => {
const export_data = {
history: chat_history,
system_prompt: system_prompt
};
const history_json = JSON.stringify(export_data);
const blob = new Blob([history_json], {type: 'application/json'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'chat_history.json';
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
""")
dl_button = gr.Button("File download")
dl_button.click(lambda: None, [chatbot], js="""
(chat_history) => {
const languageToExt = {
'python': 'py',
'javascript': 'js',
'typescript': 'ts',
'csharp': 'cs',
'ruby': 'rb',
'shell': 'sh',
'bash': 'sh',
'markdown': 'md',
'yaml': 'yml',
'rust': 'rs',
'golang': 'go',
'kotlin': 'kt'
};
const contentRegex = /```(?:([^\\n]+)?\\n)?([\\s\\S]*?)```/;
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]);
if (match && match[2]) {
const specifier = match[1] ? match[1].trim() : '';
const content = match[2];
let filename = 'download';
let fileExtension = 'txt'; // default
if (specifier) {
if (specifier.includes('.')) {
// If specifier contains a dot, treat it as a filename
const parts = specifier.split('.');
filename = parts[0];
fileExtension = parts[1];
} else {
// Use mapping if exists, otherwise use specifier itself
const langLower = specifier.toLowerCase();
fileExtension = languageToExt[langLower] || langLower;
filename = 'code';
}
}
const blob = new Blob([content], {type: 'text/plain'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `${filename}.${fileExtension}`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
}
""")
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt])
demo.unload(lambda: [os.remove(file) for file in temp_files])
demo.launch() |