Spaces:
Sleeping
Sleeping
File size: 7,255 Bytes
b2ffc9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
from typing import List
import argparse
import os
from atoms_detection.create_crop_dataset import create_contrastive_crops_dataset
from atoms_detection.dl_detection import DLDetection
from atoms_detection.dl_detection_with_gmm import DLGMMdetection
from atoms_detection.evaluation import Evaluation
from atoms_detection.training_model import train_model
from utils.paths import (
CROPS_PATH,
CROPS_DATASET,
MODELS_PATH,
LOGS_PATH,
DETECTION_PATH,
PREDS_PATH,
PRED_GT_VIS_PATH,
)
from utils.constants import ModelArgs, Split
from matplotlib import pyplot as plt
import pandas as pd
from PIL import Image
import numpy as np
from visualizations.prediction_gt_images import get_gt_coords
from visualizations.utils import plot_gt_pred_on_img
def dl_full_pipeline(
extension_name: str,
architecture: ModelArgs,
coords_csv: str,
thresholds_list: List[float],
force_create_dataset: bool = False,
force_evaluation: bool = False,
show_sampling_image: bool = False,
train: bool = False,
visualise: bool = False,
upsample: bool = False,
upsample_neg_amount: float = 0,
clip_max: float = 1,
negative_dist: float = 1.1,
):
# Create crops data
crops_folder = CROPS_PATH + f"_{extension_name}"
crops_dataset = CROPS_DATASET.replace(".csv", f"_{extension_name}.csv")
print(os.path.exists(crops_dataset))
if force_create_dataset or not os.path.exists(crops_dataset):
print("Creating crops dataset...")
create_contrastive_crops_dataset(
crops_folder,
coords_csv,
crops_dataset,
show_sampling_result=show_sampling_image,
pos_data_upsampling=upsample,
neg_upsample_multiplier=upsample_neg_amount,
contrastive_distance_multiplier=negative_dist,
) # , clip=clip_max
# training DL model
ckpt_filename = os.path.join(MODELS_PATH, f"model_{extension_name}.ckpt")
if train or not os.path.exists(ckpt_filename):
print("Training DL crops model...")
train_model(architecture, crops_dataset, crops_folder, ckpt_filename)
for threshold in thresholds_list:
inference_cache_path = os.path.join(
PREDS_PATH, f"dl_detection_{extension_name}"
)
detections_path = os.path.join(
DETECTION_PATH,
f"dl_detection_{extension_name}",
f"dl_detection_{extension_name}_{threshold}",
)
if force_evaluation or visualise or not os.path.exists(detections_path):
print(f"Detecting atoms on test data with threshold={threshold}...")
if args.run_gmm_for_multimers:
detection_pipeline = DLGMMdetection
else:
detection_pipeline = DLDetection
detection = detection_pipeline(
model_name=architecture,
ckpt_filename=ckpt_filename,
dataset_csv=coords_csv,
threshold=threshold,
detections_path=detections_path,
inference_cache_path=inference_cache_path,
)
detection.run()
logging_filename = os.path.join(
LOGS_PATH,
f"dl_evaluation_{extension_name}",
f"dl_evaluation_{extension_name}_{threshold}.csv",
)
if force_evaluation or visualise or not os.path.exists(logging_filename):
evaluation = Evaluation(
coords_csv=coords_csv,
predictions_path=detections_path,
logging_filename=logging_filename,
)
evaluation.run()
if visualise:
vis_folder = os.path.join(
PRED_GT_VIS_PATH, f"dl_detection_{extension_name}"
)
if not os.path.exists(vis_folder):
os.makedirs(vis_folder)
vis_folder = os.path.join(
vis_folder, f"dl_detection_{extension_name}_{threshold}"
)
if not os.path.exists(vis_folder):
os.makedirs(vis_folder)
is_evaluation = True
if is_evaluation:
gt_coords_dict = get_gt_coords(evaluation.coordinates_dataset)
for image_path in detection.image_dataset.iterate_data(Split.TEST):
img_name = os.path.split(image_path)[-1]
gt_coords = gt_coords_dict[img_name] if is_evaluation else None
pred_df_path = os.path.join(
detections_path, os.path.splitext(img_name)[0] + ".csv"
)
df_predicted = pd.read_csv(pred_df_path)
pred_coords = [
(row["x"], row["y"]) for _, row in df_predicted.iterrows()
]
img = Image.open(image_path)
img_arr = np.array(img).astype(np.float32)
img_normed = (img_arr - img_arr.min()) / (img_arr.max() - img_arr.min())
plot_gt_pred_on_img(img_normed, gt_coords, pred_coords)
clean_image_name = os.path.splitext(img_name)[0]
vis_path = os.path.join(vis_folder, f"{clean_image_name}.png")
plt.savefig(
vis_path, bbox_inches="tight", pad_inches=0.0, transparent=True
)
plt.close()
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("extension_name", type=str, help="Experiment extension name")
parser.add_argument(
"architecture", type=ModelArgs, choices=ModelArgs, help="Architecture name"
)
parser.add_argument(
"coords_csv", type=str, help="Coordinates CSV file to use as input"
)
parser.add_argument(
"-t" "--thresholds", nargs="+", type=float, help="Threshold value"
)
parser.add_argument(
"-c", type=float, default=1, help="Clipping quantile (0..1]. CURRENTLY USELESS!"
)
parser.add_argument(
"-nd", type=float, default=1.1, help="Negative contrastive crop distance"
)
parser.add_argument("--force_create_dataset", action="store_true")
parser.add_argument("--force_evaluation", action="store_true")
parser.add_argument("--show_sampling_result", action="store_true")
parser.add_argument("--train", action="store_true")
parser.add_argument("--visualise", action="store_true")
parser.add_argument("--upsample", action="store_true")
parser.add_argument(
"--run_gmm_for_multimers",
action="store_true",
help="If selected, a postprocessing will be run to split large atoms (possible multimers) with a GMM",
)
parser.add_argument(
"--upsample_neg",
type=float,
default=0,
help="Upsample amount for negative crops during training",
)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
print(args)
dl_full_pipeline(
args.extension_name,
args.architecture,
args.coords_csv,
args.t__thresholds,
args.force_create_dataset,
args.force_evaluation,
args.show_sampling_result,
args.train,
args.visualise,
args.upsample,
args.upsample_neg,
args.c,
args.nd,
)
|