Spaces:
Runtime error
Runtime error
File size: 16,843 Bytes
cacafc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
import json
import pickle
from argparse import ArgumentParser
from typing import List, Tuple, Dict
import clip
import numpy as np
import torch
import torch.nn.functional as F
from clip.model import CLIP
from torch.utils.data import DataLoader
from tqdm import tqdm
from data_utils import PROJECT_ROOT, targetpad_transform
from loader import CIRRDataset, CIRCODataset
from encode_with_pseudo_tokens import encode_with_pseudo_tokens, encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, PIC2WORD
from utils import extract_image_features, device, collate_fn, extract_pseudo_tokens_with_phi
@torch.no_grad()
def cirr_generate_test_submission_file(dataset_path: str, image_encoder, text_encoder, ref_names_list: List[str],
pseudo_tokens: torch.Tensor, preprocess: callable, submission_name: str) -> None:
"""
Generate the test submission file for the CIRR dataset given the pseudo tokens
"""
# Load the CLIP model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval()
# Compute the index features
classic_test_dataset = CIRRDataset(dataset_path, 'test1', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_test_dataset, image_encoder)
relative_test_dataset = CIRRDataset(dataset_path, 'test1', 'relative', preprocess)
# Get the predictions dicts
pairid_to_retrieved_images, pairid_to_group_retrieved_images = \
cirr_generate_test_dicts(relative_test_dataset, text_encoder, index_features, index_names,
ref_names_list, pseudo_tokens)
submission = {
'version': 'rc2',
'metric': 'recall'
}
group_submission = {
'version': 'rc2',
'metric': 'recall_subset'
}
submission.update(pairid_to_retrieved_images)
group_submission.update(pairid_to_group_retrieved_images)
submissions_folder_path = os.path.join('./submission', 'cirr')
os.makedirs(submissions_folder_path, exist_ok=True)
with open(os.path.join(submissions_folder_path, f"{submission_name}.json"), 'w+') as file:
json.dump(submission, file, sort_keys=True)
with open(os.path.join(submissions_folder_path, f"subset_{submission_name}.json"), 'w+') as file:
json.dump(group_submission, file, sort_keys=True)
def cirr_generate_test_dicts(relative_test_dataset: CIRRDataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: List[str]) \
-> Tuple[Dict[str, List[str]], Dict[str, List[str]]]:
"""
Generate the test submission dicts for the CIRR dataset given the pseudo tokens
"""
# Get the predicted features
predicted_features, reference_names, pairs_id, group_members = \
cirr_generate_test_predictions(clip_model, relative_test_dataset, ref_names_list, pseudo_tokens)
print(f"Compute CIRR prediction dicts")
# Normalize the index features
index_features = index_features.to(device)
index_features = F.normalize(index_features, dim=-1).float()
# Compute the distances and sort the results
distances = 1 - predicted_features @ index_features.T
sorted_indices = torch.argsort(distances, dim=-1).cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Delete the reference image from the results
reference_mask = torch.tensor(
sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(sorted_index_names),
-1))
sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
sorted_index_names.shape[1] - 1)
# Compute the subset predictions
group_members = np.array(group_members)
group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
sorted_group_names = sorted_index_names[group_mask].reshape(sorted_index_names.shape[0], -1)
# Generate prediction dicts
pairid_to_retrieved_images = {str(int(pair_id)): prediction[:50].tolist() for (pair_id, prediction) in
zip(pairs_id, sorted_index_names)}
pairid_to_group_retrieved_images = {str(int(pair_id)): prediction[:3].tolist() for (pair_id, prediction) in
zip(pairs_id, sorted_group_names)}
return pairid_to_retrieved_images, pairid_to_group_retrieved_images
def cirr_generate_test_predictions(clip_model, relative_test_dataset: CIRRDataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> \
Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
"""
Generate the test prediction features for the CIRR dataset given the pseudo tokens
"""
# Create the test dataloader
relative_test_loader = DataLoader(dataset=relative_test_dataset, batch_size=32, num_workers=10,
pin_memory=False)
predicted_features_list = []
reference_names_list = []
pair_id_list = []
group_members_list = []
# Compute the predictions
for batch in tqdm(relative_test_loader):
reference_names = batch['reference_name']
pairs_id = batch['pair_id']
relative_captions = batch['relative_caption']
group_members = batch['group_members']
group_members = np.array(group_members).T.tolist()
input_captions = [
f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
reference_names_list.extend(reference_names)
pair_id_list.extend(pairs_id)
group_members_list.extend(group_members)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, reference_names_list, pair_id_list, group_members_list
@torch.no_grad()
def circo_generate_test_submission_file(dataset_path: str, image_encoder, text_encoder, ref_names_list: List[str],
pseudo_tokens: torch.Tensor, preprocess: callable,
submission_name: str) -> None:
"""
Generate the test submission file for the CIRCO dataset given the pseudo tokens
"""
# Load the CLIP model
#clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
#clip_model = clip_model.float().eval().requires_grad_(False)
# Compute the index features
classic_test_dataset = CIRCODataset(dataset_path, 'test', 'classic', preprocess)
index_features, index_names = extract_image_features(classic_test_dataset, image_encoder)
relative_test_dataset = CIRCODataset(dataset_path, 'test', 'relative', preprocess)
# Get the predictions dict
queryid_to_retrieved_images = circo_generate_test_dict(relative_test_dataset, text_encoder, index_features,
index_names, ref_names_list, pseudo_tokens)
submissions_folder_path = os.path.join('./submission', 'circo')
os.makedirs(submissions_folder_path, exist_ok=True)
with open(os.path.join(submissions_folder_path, f"{submission_name}.json"), 'w+') as file:
json.dump(queryid_to_retrieved_images, file, sort_keys=True)
def circo_generate_test_predictions(clip_model, relative_test_dataset: CIRCODataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> [torch.Tensor, List[List[str]]]:
"""
Generate the test prediction features for the CIRCO dataset given the pseudo tokens
"""
# Create the test dataloader
relative_test_loader = DataLoader(dataset=relative_test_dataset, batch_size=32, num_workers=10,
pin_memory=False, collate_fn=collate_fn, shuffle=False)
predicted_features_list = []
query_ids_list = []
# Compute the predictions
for batch in tqdm(relative_test_loader):
reference_names = batch['reference_name']
relative_captions = batch['relative_caption']
query_ids = batch['query_id']
input_captions = [f"a photo of $ that {caption}" for caption in relative_captions]
batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
predicted_features = F.normalize(text_features)
predicted_features_list.append(predicted_features)
query_ids_list.extend(query_ids)
predicted_features = torch.vstack(predicted_features_list)
return predicted_features, query_ids_list
def circo_generate_test_dict(relative_test_dataset: CIRCODataset, clip_model, index_features: torch.Tensor,
index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
-> Dict[str, List[str]]:
"""
Generate the test submission dicts for the CIRCO dataset given the pseudo tokens
"""
# Get the predicted features
predicted_features, query_ids = circo_generate_test_predictions(clip_model, relative_test_dataset,
ref_names_list, pseudo_tokens)
# Normalize the features
index_features = index_features.float().to(device)
index_features = F.normalize(index_features, dim=-1)
# Compute the similarity
similarity = predicted_features @ index_features.T
sorted_indices = torch.topk(similarity, dim=-1, k=50).indices.cpu()
sorted_index_names = np.array(index_names)[sorted_indices]
# Generate prediction dicts
queryid_to_retrieved_images = {query_id: query_sorted_names[:50].tolist() for
(query_id, query_sorted_names) in zip(query_ids, sorted_index_names)}
return queryid_to_retrieved_images
def main():
parser = ArgumentParser()
parser.add_argument("--submission-name", type=str, required=True, help="Filename of the generated submission file")
parser.add_argument("--exp-name", type=str, help="Experiment to evaluate")
parser.add_argument("--dataset", type=str, required=True, choices=['cirr', 'circo'], help="Dataset to use")
parser.add_argument("--dataset-path", type=str, help="Path to the dataset", required=True)
parser.add_argument("--eval-type", type=str, choices=['oti', 'phi', 'searle', 'searle-xl', 'pic2word'], required=True,
help="If 'oti' evaluate directly using the inverted oti pseudo tokens, "
"if 'phi' predicts the pseudo tokens using the phi network, "
"if 'searle' uses the pre-trained SEARLE model to predict the pseudo tokens, "
"if 'searle-xl' uses the pre-trained SEARLE-XL model to predict the pseudo tokens")
parser.add_argument("--preprocess-type", default="clip", type=str, choices=['clip', 'targetpad'],
help="Preprocess pipeline to use")
parser.add_argument("--phi-checkpoint-name", type=str,
help="Phi checkpoint to use, needed when using phi, e.g. 'phi_20.pt'")
parser.add_argument("--clip_model_name", default="giga", type=str)
parser.add_argument("--cache_dir", default="./hf_models", type=str)
parser.add_argument("--l2_normalize", action="store_true", help="Whether or not to use l2 normalization")
args = parser.parse_args()
if args.eval_type == 'oti':
experiment_path = PROJECT_ROOT / 'data' / "oti_pseudo_tokens" / args.dataset.lower() / 'test' / args.exp_name
with open(experiment_path / 'hyperparameters.json') as f:
hyperparameters = json.load(f)
pseudo_tokens = torch.load(experiment_path / 'ema_oti_pseudo_tokens.pt', map_location=device)
with open(experiment_path / 'image_names.pkl', 'rb') as f:
ref_names_list = pickle.load(f)
clip_model_name = hyperparameters['clip_model_name']
clip_model, clip_preprocess = clip.load(clip_model_name, device='cpu', jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
elif args.eval_type in ['phi', 'searle', 'searle-xl', 'pic2word']:
if args.eval_type == 'phi':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = Phi(input_dim=text_encoder.config.projection_dim,
hidden_dim=text_encoder.config.projection_dim * 4,
output_dim=text_encoder.config.hidden_size, dropout=0.5).to(
device)
phi.load_state_dict(
torch.load(args.phi_checkpoint_name, map_location=device)[
phi.__class__.__name__])
phi = phi.eval()
elif args.eval_type == 'pic2word':
args.mixed_precision = 'fp16'
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
phi = PIC2WORD(embed_dim=text_encoder.config.projection_dim,
output_dim=text_encoder.config.hidden_size,
).to(device)
sd = torch.load(args.phi_checkpoint_name, map_location=device)['state_dict_img2text']
sd = {k[len('module.'):]: v for k, v in sd.items()}
phi.load_state_dict(sd)
phi = phi.eval()
else: # searle or searle-xl
if args.eval_type == 'searle':
clip_model_name = 'ViT-B/32'
else: # args.eval_type == 'searle-xl':
clip_model_name = 'ViT-L/14'
phi, _ = torch.hub.load(repo_or_dir='miccunifi/SEARLE', model='searle', source='github',
backbone=clip_model_name)
phi = phi.to(device).eval()
clip_model, clip_preprocess = clip.load(clip_model_name, device=device, jit=False)
if args.preprocess_type == 'targetpad':
print('Target pad preprocess pipeline is used')
preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
elif args.preprocess_type == 'clip':
print('CLIP preprocess pipeline is used')
preprocess = clip_preprocess
else:
raise ValueError("Preprocess type not supported")
if args.dataset.lower() == 'cirr':
relative_test_dataset = CIRRDataset(args.dataset_path, 'test', 'relative', preprocess, no_duplicates=True)
elif args.dataset.lower() == 'circo':
relative_test_dataset = CIRCODataset(args.dataset_path, 'test', 'relative', preprocess)
else:
raise ValueError("Dataset not supported")
#clip_model = clip_model.float().to(device)
image_encoder = image_encoder.float().to(device)
text_encoder = text_encoder.float().to(device)
pseudo_tokens, ref_names_list = extract_pseudo_tokens_with_phi(image_encoder, phi, relative_test_dataset, args)
pseudo_tokens = pseudo_tokens.to(device)
else:
raise ValueError("Eval type not supported")
print(f"Eval type = {args.eval_type} \t exp name = {args.exp_name} \t")
if args.dataset == 'cirr':
cirr_generate_test_submission_file(args.dataset_path, image_encoder, text_encoder, ref_names_list, pseudo_tokens,
preprocess, args.submission_name)
elif args.dataset == 'circo':
circo_generate_test_submission_file(args.dataset_path, image_encoder, text_encoder, ref_names_list, pseudo_tokens,
preprocess, args.submission_name)
else:
raise ValueError("Dataset not supported")
if __name__ == '__main__':
main()
|