Spaces:
Runtime error
Runtime error
File size: 9,208 Bytes
cacafc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
'''
LinCIR
Copyright (c) 2023-present NAVER Corp.
CC BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0/)
'''
import os
import time
from argparse import ArgumentParser
import numpy as np
import torch
import gradio as gr
from clip_retrieval.clip_client import ClipClient
from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, PIC2WORD
import transformers
from huggingface_hub import hf_hub_url, cached_download
def parse_args():
parser = ArgumentParser()
parser.add_argument("--lincir_ckpt_path", default=None, type=str,
help="The output directory where the model predictions and checkpoints will be written")
parser.add_argument("--pic2word_ckpt_path", default=None, type=str)
parser.add_argument("--cache_dir", default="./hf_models", type=str,
help="Path to model cache folder")
parser.add_argument("--clip_model_name", default="large", type=str,
help="CLIP model to use, e.g 'large', 'huge', 'giga'")
parser.add_argument("--mixed_precision", default="fp16", type=str)
parser.add_argument("--test_fps", action="store_true")
args = parser.parse_args()
return args
def load_models(args):
if torch.cuda.is_available():
device = 'cuda:0'
dtype = torch.float16
else:
device = 'cpu'
dtype = torch.float32
clip_vision_model, clip_preprocess, clip_text_model, tokenizer = build_text_encoder(args)
tokenizer.add_special_tokens({'additional_special_tokens':["[$]"]}) # 49408
# ours
phi = Phi(input_dim=clip_text_model.config.projection_dim,
hidden_dim=clip_text_model.config.projection_dim * 4,
output_dim=clip_text_model.config.hidden_size, dropout=0.0)
phi.eval()
# searle
phi_searle, _ = torch.hub.load(repo_or_dir='miccunifi/SEARLE', model='searle', source='github',
backbone='ViT-L/14')
phi_searle.eval()
# pic2word
phi_pic2word = PIC2WORD(embed_dim=clip_text_model.config.projection_dim,
output_dim=clip_text_model.config.hidden_size)
phi_pic2word.eval()
clip_vision_model.to(device, dtype=dtype)
clip_text_model.to(device, dtype=dtype)
if not args.test_fps:
# download and load sd
if not os.path.exists('./pretrained_models/lincir_large.pt'):
model_file_url = hf_hub_url(repo_id='navervision/zeroshot-cir-models', filename='lincir_large.pt')
cached_download(model_file_url, cache_dir='./pretrained_models', force_filename='lincir_large.pt')
state_dict = torch.load('./pretrained_models/lincir_large.pt', map_location=device)
phi.load_state_dict(state_dict['Phi'])
if not os.path.exists('./pretrained_models/pic2word_large.pt'):
model_file_url = hf_hub_url(repo_id='navervision/zeroshot-cir-models', filename='pic2word_large.pt')
cached_download(model_file_url, cache_dir='./pretrained_models', force_filename='pic2word_large.pt')
sd = torch.load('./pretrained_models/pic2word_large.pt', map_location=device)['state_dict_img2text']
sd = {k[len('module.'):]: v for k, v in sd.items()}
phi_pic2word.load_state_dict(sd)
phi.to(device, dtype=dtype)
phi_searle.to(device, dtype=dtype)
phi_pic2word.to(device, dtype=dtype)
decoder = None
return {'clip_vision_model': clip_vision_model,
'clip_preprocess': clip_preprocess,
'clip_text_model': clip_text_model,
'tokenizer': tokenizer,
'phi': phi,
'phi_searle': phi_searle,
'phi_pic2word': phi_pic2word,
'decoder': decoder,
'device': device,
'dtype': dtype,
'clip_model_name': args.clip_model_name,
}
def predict(images, input_text, model_name):
start_time = time.time()
input_images = model_dict['clip_preprocess'](images, return_tensors='pt')['pixel_values'].to(model_dict['device'])
input_text = input_text.replace('$', '[$]')
input_tokens = model_dict['tokenizer'](text=input_text, return_tensors='pt', padding='max_length', truncation=True)['input_ids'].to(model_dict['device'])
input_tokens = torch.where(input_tokens == 49408,
torch.ones_like(input_tokens) * 259,
input_tokens)
image_features = model_dict['clip_vision_model'](pixel_values=input_images.to(model_dict['dtype'])).image_embeds
clip_image_time = time.time() - start_time
start_time = time.time()
if model_name == 'lincir':
estimated_token_embeddings = model_dict['phi'](image_features)
elif model_name == 'searle':
estimated_token_embeddings = model_dict['phi_searle'](image_features)
else: # model_name == 'pic2word'
estimated_token_embeddings = model_dict['phi_pic2word'](image_features)
phi_time = time.time() - start_time
start_time = time.time()
text_embeddings, text_last_hidden_states = encode_with_pseudo_tokens_HF(model_dict['clip_text_model'], input_tokens, estimated_token_embeddings, return_last_states=True)
clip_text_time = time.time() - start_time
start_time = time.time()
results = client.query(embedding_input=text_embeddings[0].tolist())
retrieval_time = time.time() - start_time
output = ''
for idx, result in enumerate(results):
image_url = result['url']
output += f'![image]({image_url})\n'
time_output = {'CLIP visual extractor': clip_image_time,
'CLIP textual extractor': clip_text_time,
'Phi projection': phi_time,
'CLIP retrieval': retrieval_time,
}
setup_output = {'device': model_dict['device'],
'dtype': model_dict['dtype'],
'Phi': model_name,
'CLIP': model_dict['clip_model_name'],
}
return {'time': time_output, 'setup': setup_output}, output
def test_fps(batch_size=1):
dummy_images = torch.rand([batch_size, 3, 224, 224])
todo_list = ['phi', 'phi_pic2word']
input_tokens = model_dict['tokenizer'](text=['a photo of $1 with flowers'] * batch_size, return_tensors='pt', padding='max_length', truncation=True)['input_ids'].to(model_dict['device'])
input_tokens = torch.where(input_tokens == 49409,
torch.ones_like(input_tokens) * 259,
input_tokens)
for model_name in todo_list:
time_array = []
n_repeat = 100
for _ in range(n_repeat):
start_time = time.time()
image_features = model_dict['clip_vision_model'](pixel_values=dummy_images.to(model_dict['clip_vision_model'].device, dtype=model_dict['clip_vision_model'].dtype)).image_embeds
token_embeddings = model_dict[model_name](image_features)
text_embeddings = encode_with_pseudo_tokens_HF(model_dict['clip_text_model'], input_tokens, token_embeddings)
end_time = time.time()
if _ > 5:
time_array.append(end_time - start_time)
print(f"{model_name}: {np.mean(time_array):.4f}")
if __name__ == '__main__':
args = parse_args()
global model_dict, client
model_dict = load_models(args)
if args.test_fps:
# check FPS of all models.
test_fps(1)
exit()
client = ClipClient(url="https://knn.laion.ai/knn-service",
indice_name="laion5B-H-14" if args.clip_model_name == "huge" else "laion5B-L-14",
)
title = 'Zeroshot CIR demo'
md_title = f'''# {title}
[LinCIR](https://arxiv.org/abs/2312.01998): Language-only Training of Zero-shot Composed Image Retrieval
[SEARLE](https://arxiv.org/abs/2303.15247): Zero-shot Composed Image Retrieval with Textual Inversion
[Pic2Word](https://arxiv.org/abs/2302.03084): Mapping Pictures to Words for Zero-shot Composed Image Retrieval
K-NN index for the retrieval results are entirely trained using the entire Laion-5B imageset. This is made possible thanks to the great work of [rom1504](https://github.com/rom1504/clip-retrieval).
'''
with gr.Blocks(title=title) as demo:
gr.Markdown(md_title)
with gr.Row():
with gr.Column():
with gr.Row():
image_source = gr.Image(type='pil', label='image1')
model_name = gr.Radio(['lincir', 'searle', 'pic2word'], label='Phi model', value='lincir')
text_input = gr.Textbox(value='', label='Input text guidance. Special token is $')
submit_button = gr.Button('Submit')
gr.Examples([["example1.jpg", "$, pencil sketch", 'lincir']], inputs=[image_source, text_input, model_name])
with gr.Column():
json_output = gr.JSON(label='Processing time')
md_output = gr.Markdown(label='Output')
submit_button.click(predict, inputs=[image_source, text_input, model_name], outputs=[json_output, md_output])
demo.queue()
demo.launch()
|