File size: 11,174 Bytes
934fdee 5d32f93 934fdee 9613573 934fdee 5d32f93 934fdee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
"""
On chaos-01:
CUDA_VISIBLE_DEVICES="" XFORMERS_DISABLED=1 python app.py
CUDA_VISIBLE_DEVICES="0" XFORMERS_DISABLED=0 python app.py
On laptop:
ssh -N -L 8000:127.0.0.1:7860 chaos-01
"""
import spaces
import os
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
from utils.constants import SMPLX_DIR, MEAN_PARAMS
from argparse import ArgumentParser
import torch
import gradio as gr
from PIL import Image, ImageOps
import numpy as np
from pathlib import Path
if torch.cuda.is_available() and torch.cuda.device_count()>0:
device = torch.device('cuda:0')
os.environ["PYOPENGL_PLATFORM"] = "egl"
device_name = torch.cuda.get_device_name(0)
print(f"Device - GPU: {device_name}")
else:
device = torch.device('cpu')
os.environ["PYOPENGL_PLATFORM"] = "osmesa"
device_name = 'CPU'
print("Device - CPU")
from demo import forward_model, get_camera_parameters, overlay_human_meshes, load_model as _load_model
from utils import normalize_rgb, demo_color as color, create_scene
import time
import shutil
model = None
example_data_dir = 'example_data'
list_examples = os.listdir(example_data_dir)
list_examples_basename = [x for x in list_examples if x.endswith(('.jpg', 'jpeg', 'png')) and not x.startswith('._')]
list_examples = [[os.path.join(example_data_dir, x)] for x in list_examples_basename]
_list_examples_basename = [Path(x).stem for x in list_examples_basename]
tmp_data_dir = 'tmp_data'
def download_smplx():
os.makedirs(os.path.join(SMPLX_DIR, 'smplx'), exist_ok=True)
smplx_fname = os.path.join(SMPLX_DIR, 'smplx', 'SMPLX_NEUTRAL.npz')
if not os.path.isfile(smplx_fname):
print('Start to download the SMPL-X model')
if not ('SMPLX_LOGIN' in os.environ and 'SMPLX_PWD' in os.environ):
raise ValueError('You need to set a secret for SMPLX_LOGIN and for SMPLX_PWD to run this space')
fname = "models_smplx_v1_1.zip"
username = os.environ['SMPLX_LOGIN'].replace('@','%40')
password = os.environ['SMPLX_PWD']
cmd = f"wget -O {fname} --save-cookies cookies.txt --keep-session-cookies --post-data 'username={username}&password={password}' \"https://download.is.tue.mpg.de/download.php?domain=smplx&sfile={fname}\""
os.system(cmd)
assert os.path.isfile(fname), "failed to download"
os.system(f'unzip {fname}')
os.system(f"cp models/smplx/SMPLX_NEUTRAL.npz {smplx_fname}")
assert os.path.isfile(smplx_fname), "failed to find smplx file"
print('SMPL-X has been succesfully downloaded')
else:
print('SMPL-X is already here')
if not os.path.isfile(MEAN_PARAMS):
print('Start to download the SMPL mean params')
os.system(f"wget -O {MEAN_PARAMS} https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/smpl_mean_params.npz?versionId=CAEQHhiBgICN6M3V6xciIDU1MzUzNjZjZGNiOTQ3OWJiZTJmNThiZmY4NmMxMTM4")
print('SMPL mean params have been succesfully downloaded')
else:
print('SMPL mean params is already here')
@spaces.GPU
def infer(fn, det_thresh, nms_kernel_size):
global device
global model
model = model.to(device)
# Is it an image from example_data_dir ?
basename = Path(os.path.basename(fn)).stem
_basename = f"{basename}_thresh{int(det_thresh*100)}_nms{int(nms_kernel_size)}"
is_known_image = (basename in _list_examples_basename) # only images from example_data
# Filenames
if not is_known_image:
_basename = 'output' # such that we do not save all the uploaded results - not sure ?
_glb_fn = f"{_basename}.glb"
_rend_fn = f"{_basename}.png"
glb_fn = os.path.join(tmp_data_dir, _glb_fn)
rend_fn = os.path.join(tmp_data_dir, _rend_fn)
os.makedirs(tmp_data_dir, exist_ok=True)
# Already processed
is_preprocessed = False
if is_known_image:
_tmp_data_dir_files = os.listdir(tmp_data_dir)
is_preprocessed = (_glb_fn in _tmp_data_dir_files) and (_rend_fn in _tmp_data_dir_files) # already preprocessed
is_known = is_known_image and is_preprocessed
if not is_known:
im = Image.open(fn)
fov, p_x, p_y = 60, None, None # FOV=60 always here!
img_size = model.img_size
# Get camera information
p_x, p_y = None, None
K = get_camera_parameters(img_size, fov=fov, p_x=p_x, p_y=p_y, device=device)
# Resise but keep aspect ratio
img_pil = ImageOps.contain(im, (img_size,img_size)) # keep the same aspect ratio
# Which side is too small/big
width, height = img_pil.size
pad = abs(width - height) // 2
# Pad
img_pil_bis = ImageOps.pad(img_pil.copy(), size=(img_size, img_size), color=(255, 255, 255))
img_pil = ImageOps.pad(img_pil, size=(img_size, img_size)) # pad with zero on the smallest side
# Numpy - normalize - torch.
resize_img = normalize_rgb(np.asarray(img_pil))
x = torch.from_numpy(resize_img).unsqueeze(0).to(device)
img_array = np.asarray(img_pil_bis)
img_pil_visu = Image.fromarray(img_array)
start = time.time()
humans = forward_model(model, x, K, det_thresh=det_thresh, nms_kernel_size=nms_kernel_size)
print(f"Forward: {time.time() - start:.2f}sec")
# Overlay
start = time.time()
pred_rend_array, _ = overlay_human_meshes(humans, K, model, img_pil_visu)
rend_pil = Image.fromarray(pred_rend_array.astype(np.uint8))
rend_pil.crop()
if width > height:
rend_pil = rend_pil.crop((0,pad,width,pad+height))
else:
rend_pil =rend_pil.crop((pad,0,pad+width,height))
rend_pil.save(rend_fn)
print(f"Rendering with pyrender: {time.time() - start:.2f}sec")
# Save into glb
start = time.time()
l_mesh = [humans[j]['verts_smplx'].detach().cpu().numpy() for j in range(len(humans))]
l_face = [model.smpl_layer['neutral'].bm_x.faces for j in range(len(humans))]
scene = create_scene(img_pil_visu, l_mesh, l_face, color=color, metallicFactor=0., roughnessFactor=0.5)
scene.export(glb_fn)
print(f"Exporting scene in glb: {time.time() - start:.2f}sec")
else:
print("We already have the predictions-visus stored somewhere...")
out = [rend_fn, glb_fn]
print(out)
return out
# return [rend_fn, hidden_glb_fn]
# return [rend_fn, my_glb_fn]
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--model_name", type=str, default='multiHMR')
parser.add_argument("--logs_path", type=str, default='./data')
args = parser.parse_args()
# Info
### Description and style
logo = r"""
<center>
<img src='https://europe.naverlabs.com/wp-content/uploads/2020/10/NLE_1_WHITE_264x60_opti.png' alt='Multi-HMR logo' style="width:250px; margin-bottom:10px">
</center>
"""
title = r"""
<center>
<h1 align="center">Multi-HMR: Regressing Whole-Body Human Meshes for Multiple Persons in a Single Shot</h1>
</center>
"""
description = f"""
The demo is running on a {device_name}.
<br>
[<b>Demo code</b>] If you want to run Multi-HMR on several images please consider using the demo code available on [our Github repo](https://github.com/naver/multi-hmr)
"""
article = r"""
---
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{multihmr2024,
title={Multi-HMR: Regressing Whole-Body Human Meshes for Multiple Persons in a Single Shot},
author={Baradel*, Fabien and
Armando, Matthieu and
Galaaoui, Salma and
Br{\'e}gier, Romain and
Weinzaepfel, Philippe and
Rogez, Gr{\'e}gory and
Lucas*, Thomas},
booktitle={arXiv},
year={2024}
}
```
π **License**
<br>
CC BY-NC-SA 4.0 License. Please refer to the [LICENSE file](./Multi-HMR_License.txt) for details.
<br>
π§ **Contact**
<br>
If you have any questions, please feel free to send a message to <b>fabien.baradel@naverlabs.com</b> or open an issue on the [Github repo](https://github.com/naver/multi-hmr).
"""
# Download SMPLX model and mean params
download_smplx()
# Loading the model
# model = _load_model(args.model_name, device=device)
model = _load_model(args.model_name, device=torch.device('cpu'))
# Gradio demo
with gr.Blocks(title="Multi-HMR", css=".gradio-container") as demo:
# gr.HTML("""
# <div style="font-weight:bold; text-align:center; color:royalblue;">Multi-HMR: <br> Multi-Person Whole-Body Human Mesh Recovery in a Single Shot </div>
# """)
gr.Markdown(logo)
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image",
# type="pil",
type="filepath",
sources=['upload', 'clipboard'])
with gr.Column():
output_image = gr.Image(label="Reconstructions - Overlay",
# type="pil",
type="filepath",
)
gr.HTML("""<br/>""")
with gr.Row():
with gr.Column():
alpha = -70 # longitudinal rotation in degree
beta = 70 # latitudinal rotation in degree
radius = 3. # distance to the 3D model
radius = None # distance to the 3D model
output_model3d = gr.Model3D(label="Reconstructions - 3D scene",
camera_position=(alpha, beta, radius),
clear_color=[1.0, 1.0, 1.0, 0.0])
gr.HTML("""<br/>""")
with gr.Row():
threshold = gr.Slider(0.1, 0.7, step=0.1, value=0.3, label='Detection Threshold')
nms = gr.Radio(label="NMS kernel size", choices=[1, 3, 5], value=3)
send_btn = gr.Button("Infer")
send_btn.click(fn=infer, inputs=[input_image, threshold, nms], outputs=[output_image, output_model3d])
gr.Examples(list_examples,
inputs=[input_image, 0.3, 3])
gr.Markdown(article)
demo.queue() # <-- Sets up a queue with default parameters
demo.launch(debug=True, share=False)
|