File size: 11,174 Bytes
934fdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d32f93
 
934fdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9613573
934fdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d32f93
 
934fdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
On chaos-01:
    CUDA_VISIBLE_DEVICES="" XFORMERS_DISABLED=1 python app.py
    CUDA_VISIBLE_DEVICES="0" XFORMERS_DISABLED=0 python app.py

On laptop:
    ssh -N -L 8000:127.0.0.1:7860 chaos-01

"""
import spaces
import os
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"

from utils.constants import SMPLX_DIR, MEAN_PARAMS
from argparse import ArgumentParser
import torch
import gradio as gr
from PIL import Image, ImageOps
import numpy as np
from pathlib import Path

if torch.cuda.is_available() and torch.cuda.device_count()>0:
    device = torch.device('cuda:0')
    os.environ["PYOPENGL_PLATFORM"] = "egl"
    device_name = torch.cuda.get_device_name(0)
    print(f"Device - GPU: {device_name}")
else:
    device = torch.device('cpu')
    os.environ["PYOPENGL_PLATFORM"] = "osmesa"
    device_name = 'CPU'
    print("Device - CPU")

from demo import forward_model, get_camera_parameters, overlay_human_meshes, load_model as _load_model
from utils import normalize_rgb, demo_color as color, create_scene
import time
import shutil

model = None
example_data_dir = 'example_data'
list_examples = os.listdir(example_data_dir)
list_examples_basename = [x for x in list_examples if x.endswith(('.jpg', 'jpeg', 'png')) and not x.startswith('._')]
list_examples = [[os.path.join(example_data_dir, x)] for x in list_examples_basename]
_list_examples_basename = [Path(x).stem for x in list_examples_basename]
tmp_data_dir = 'tmp_data'

def download_smplx():
    os.makedirs(os.path.join(SMPLX_DIR, 'smplx'), exist_ok=True)
    smplx_fname = os.path.join(SMPLX_DIR, 'smplx', 'SMPLX_NEUTRAL.npz')

    if not os.path.isfile(smplx_fname):
        print('Start to download the SMPL-X model')
        if not ('SMPLX_LOGIN' in os.environ and 'SMPLX_PWD' in os.environ):
                raise ValueError('You need to set a secret for SMPLX_LOGIN and for SMPLX_PWD to run this space')
        fname = "models_smplx_v1_1.zip"
        username = os.environ['SMPLX_LOGIN'].replace('@','%40')
        password = os.environ['SMPLX_PWD']
        cmd = f"wget -O {fname} --save-cookies cookies.txt --keep-session-cookies --post-data 'username={username}&password={password}' \"https://download.is.tue.mpg.de/download.php?domain=smplx&sfile={fname}\""
        os.system(cmd)
        assert os.path.isfile(fname), "failed to download"
        os.system(f'unzip {fname}')
        os.system(f"cp models/smplx/SMPLX_NEUTRAL.npz {smplx_fname}")
        assert os.path.isfile(smplx_fname), "failed to find smplx file"
        print('SMPL-X has been succesfully downloaded')
    else:
         print('SMPL-X is already here')

    if not os.path.isfile(MEAN_PARAMS):
        print('Start to download the SMPL mean params')
        os.system(f"wget -O {MEAN_PARAMS}  https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmhuman3d/models/smpl_mean_params.npz?versionId=CAEQHhiBgICN6M3V6xciIDU1MzUzNjZjZGNiOTQ3OWJiZTJmNThiZmY4NmMxMTM4")
        print('SMPL mean params have been succesfully downloaded')
    else:
         print('SMPL mean params is already here')
 
@spaces.GPU
def infer(fn, det_thresh, nms_kernel_size):
    global device
    global model

    model = model.to(device)
    
    # Is it an image from example_data_dir ?
    basename = Path(os.path.basename(fn)).stem
    _basename = f"{basename}_thresh{int(det_thresh*100)}_nms{int(nms_kernel_size)}"
    is_known_image = (basename in _list_examples_basename) # only images from example_data
    
    # Filenames
    if not is_known_image:
        _basename = 'output' # such that we do not save all the uploaded results - not sure ?
    _glb_fn = f"{_basename}.glb"
    _rend_fn = f"{_basename}.png"
    glb_fn = os.path.join(tmp_data_dir, _glb_fn)
    rend_fn = os.path.join(tmp_data_dir, _rend_fn)
    os.makedirs(tmp_data_dir, exist_ok=True)

    # Already processed
    is_preprocessed = False
    if is_known_image:
        _tmp_data_dir_files = os.listdir(tmp_data_dir)
        is_preprocessed = (_glb_fn in _tmp_data_dir_files) and (_rend_fn in _tmp_data_dir_files) # already preprocessed

    is_known = is_known_image and is_preprocessed
    if not is_known:
        im = Image.open(fn)
        fov, p_x, p_y = 60, None, None # FOV=60 always here!
        img_size = model.img_size

        # Get camera information
        p_x, p_y = None, None
        K = get_camera_parameters(img_size, fov=fov, p_x=p_x, p_y=p_y, device=device)

        # Resise but keep aspect ratio
        img_pil = ImageOps.contain(im, (img_size,img_size)) # keep the same aspect ratio

        # Which side is too small/big
        width, height = img_pil.size
        pad = abs(width - height) // 2

        # Pad
        img_pil_bis = ImageOps.pad(img_pil.copy(), size=(img_size, img_size), color=(255, 255, 255))
        img_pil = ImageOps.pad(img_pil, size=(img_size, img_size)) # pad with zero on the smallest side

        # Numpy - normalize - torch.
        resize_img = normalize_rgb(np.asarray(img_pil))
        x = torch.from_numpy(resize_img).unsqueeze(0).to(device)

        img_array = np.asarray(img_pil_bis)
        img_pil_visu = Image.fromarray(img_array)

        start = time.time()
        humans = forward_model(model, x, K, det_thresh=det_thresh, nms_kernel_size=nms_kernel_size)
        print(f"Forward: {time.time() - start:.2f}sec")

        # Overlay
        start = time.time()
        pred_rend_array, _ = overlay_human_meshes(humans, K, model, img_pil_visu)
        rend_pil = Image.fromarray(pred_rend_array.astype(np.uint8))
        rend_pil.crop()
        if width > height:
            rend_pil = rend_pil.crop((0,pad,width,pad+height))
        else:
            rend_pil =rend_pil.crop((pad,0,pad+width,height))
        rend_pil.save(rend_fn)
        print(f"Rendering with pyrender: {time.time() - start:.2f}sec")

        # Save into glb
        start = time.time()
        l_mesh = [humans[j]['verts_smplx'].detach().cpu().numpy() for j in range(len(humans))]
        l_face = [model.smpl_layer['neutral'].bm_x.faces for j in range(len(humans))]
        scene = create_scene(img_pil_visu, l_mesh, l_face, color=color, metallicFactor=0., roughnessFactor=0.5)
        scene.export(glb_fn)
        print(f"Exporting scene in glb: {time.time() - start:.2f}sec")
    else:
        print("We already have the predictions-visus stored somewhere...")
    
    out = [rend_fn, glb_fn]
    print(out)
    return out
    # return [rend_fn, hidden_glb_fn]
    # return [rend_fn, my_glb_fn]

     
if __name__ == "__main__":
        parser = ArgumentParser()
        parser.add_argument("--model_name", type=str, default='multiHMR')
        parser.add_argument("--logs_path", type=str, default='./data')
        
        args = parser.parse_args()

        # Info
        ### Description and style
        logo = r"""
        <center>
            <img src='https://europe.naverlabs.com/wp-content/uploads/2020/10/NLE_1_WHITE_264x60_opti.png' alt='Multi-HMR logo' style="width:250px; margin-bottom:10px">
        </center>
        """
        title = r"""
        <center>
            <h1 align="center">Multi-HMR: Regressing Whole-Body Human Meshes for Multiple Persons in a Single Shot</h1>
        </center>
        """

        description = f"""
        The demo is running on a {device_name}.
        <br>
        [<b>Demo code</b>] If you want to run Multi-HMR on several images please consider using the demo code available on [our Github repo](https://github.com/naver/multi-hmr)
        """

        article = r"""
        ---
        πŸ“ **Citation**
        <br>
        If our work is useful for your research, please consider citing:
        ```bibtex
        @inproceedings{multihmr2024,
            title={Multi-HMR: Regressing Whole-Body Human Meshes for Multiple Persons in a Single Shot},
            author={Baradel*, Fabien and 
                    Armando, Matthieu and 
                    Galaaoui, Salma and 
                    Br{\'e}gier, Romain and
                    Weinzaepfel, Philippe and 
                    Rogez, Gr{\'e}gory and 
                    Lucas*, Thomas},
            booktitle={arXiv},
            year={2024}
        }
        ```
        πŸ“‹ **License**
        <br>
        CC BY-NC-SA 4.0 License. Please refer to the [LICENSE file](./Multi-HMR_License.txt) for details.
        <br>
        πŸ“§ **Contact**
        <br>
        If you have any questions, please feel free to send a message to <b>fabien.baradel@naverlabs.com</b> or open an issue on the [Github repo](https://github.com/naver/multi-hmr).
        """

        # Download SMPLX model and mean params
        download_smplx()

        # Loading the model
        # model = _load_model(args.model_name, device=device)
        model = _load_model(args.model_name, device=torch.device('cpu'))
        
        # Gradio demo
        with gr.Blocks(title="Multi-HMR", css=".gradio-container") as demo:
            # gr.HTML("""
            #         <div style="font-weight:bold; text-align:center; color:royalblue;">Multi-HMR: <br> Multi-Person Whole-Body Human Mesh Recovery in a Single Shot </div>
            #         """)
            gr.Markdown(logo)
            gr.Markdown(title)
            gr.Markdown(description)

            with gr.Row():
                    with gr.Column():
                        input_image = gr.Image(label="Input image", 
                                            #    type="pil", 
                                               type="filepath", 
                                               sources=['upload', 'clipboard'])
                    with gr.Column():
                        output_image = gr.Image(label="Reconstructions - Overlay", 
                                                #    type="pil", 
                                               type="filepath",
                                                )

            gr.HTML("""<br/>""")

            with gr.Row():
                with gr.Column():
                        alpha = -70 # longitudinal rotation in degree
                        beta = 70 # latitudinal rotation in degree
                        radius = 3. # distance to the 3D model
                        radius = None # distance to the 3D model
                        output_model3d = gr.Model3D(label="Reconstructions - 3D scene", 
                                                    camera_position=(alpha, beta, radius), 
                                                    clear_color=[1.0, 1.0, 1.0, 0.0])
                
            gr.HTML("""<br/>""")

            with gr.Row():
                    threshold = gr.Slider(0.1, 0.7, step=0.1, value=0.3, label='Detection Threshold')
                    nms = gr.Radio(label="NMS kernel size", choices=[1, 3, 5], value=3)
                    send_btn = gr.Button("Infer")
                    send_btn.click(fn=infer, inputs=[input_image, threshold, nms], outputs=[output_image, output_model3d])

            gr.Examples(list_examples, 
                        inputs=[input_image, 0.3, 3])
            
            gr.Markdown(article)
        
        demo.queue()  # <-- Sets up a queue with default parameters
        demo.launch(debug=True, share=False)