File size: 20,260 Bytes
934fdee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
from torch import nn
import torch
import numpy as np
import roma
import copy
from utils import unpatch, inverse_perspective_projection, undo_focal_length_normalization, undo_log_depth
from blocks import Dinov2Backbone, FourierPositionEncoding, TransformerDecoder, SMPL_Layer
from utils import rot6d_to_rotmat, rebatch, pad_to_max
import torch.nn as nn
import numpy as np
import einops
from utils.constants import MEAN_PARAMS
class Model(nn.Module):
""" A ViT backbone followed by a "HPH" head (stack of cross attention layers with queries corresponding to detected humans.) """
def __init__(self,
backbone='dinov2_vitb14',
img_size=896,
camera_embedding='geometric', # geometric encodes viewing directions with fourrier encoding
camera_embedding_num_bands=16, # increase the size of the camera embedding
camera_embedding_max_resolution=64, # does not increase the size of the camera embedding
nearness=True, # regress log(1/z)
xat_depth=2, # number of cross attention block (SA, CA, MLP) in the HPH head.
xat_num_heads=8, # Number of attention heads
dict_smpl_layer=None,
person_center='head',
clip_dist=True,
*args, **kwargs):
super().__init__()
# Save options
self.img_size = img_size
self.nearness = nearness
self.clip_dist = clip_dist,
self.xat_depth = xat_depth
self.xat_num_heads = xat_num_heads
# Setup backbone
self.backbone = Dinov2Backbone(backbone)
self.embed_dim = self.backbone.embed_dim
self.patch_size = self.backbone.patch_size
assert self.img_size % self.patch_size == 0, "Invalid img size"
# Camera instrinsics
self.fovn = 60
self.camera_embedding = camera_embedding
self.camera_embed_dim = 0
if self.camera_embedding is not None:
if not self.camera_embedding == 'geometric':
raise NotImplementedError("Only geometric camera embedding is implemented")
self.camera = FourierPositionEncoding(n=3, num_bands=camera_embedding_num_bands,max_resolution=camera_embedding_max_resolution)
# import pdb
# pdb.set_trace()
self.camera_embed_dim = self.camera.channels
# Heads - Detection
self.mlp_classif = regression_mlp([self.embed_dim, self.embed_dim, 1]) # bg or human
# Heads - Human properties
self.mlp_offset = regression_mlp([self.embed_dim, self.embed_dim, 2]) # offset
# Dense vetcor idx
self.nrot = 53
self.idx_score, self.idx_offset, self.idx_dist = [0], [1,2], [3]
self.idx_pose = list(range(4,4+self.nrot*9))
self.idx_shape = list(range(4+self.nrot*9,4+self.nrot*9+11))
self.idx_expr = list(range(4+self.nrot*9+11,4+self.nrot*9+11+10))
# SMPL Layers
dict_smpl_layer = {'neutral': {10: SMPL_Layer(type='smplx', gender='neutral', num_betas=10, kid=False, person_center=person_center)}}
_moduleDict = []
for k, _smpl_layer in dict_smpl_layer.items():
_moduleDict.append([k, copy.deepcopy(_smpl_layer[10])])
self.smpl_layer = nn.ModuleDict(_moduleDict)
self.x_attention_head = HPH(
num_body_joints=self.nrot-1, #23,
context_dim=self.embed_dim + self.camera_embed_dim,
dim=1024,
depth=self.xat_depth,
heads=self.xat_num_heads,
mlp_dim=1024,
dim_head=32,
dropout=0.0,
emb_dropout=0.0,
at_token_res=self.img_size // self.patch_size)
def detection(self, z, nms_kernel_size, det_thresh, N):
""" Detection score on the entire low res image """
scores = _sigmoid(self.mlp_classif(z)) # per token detection score.
# Restore Height and Width dimensions.
scores = unpatch(scores, patch_size=1, c=scores.shape[2], img_size=int(np.sqrt(N)))
if nms_kernel_size > 1: # Easy nms: supress adjacent high scores with max pooling.
scores = _nms(scores, kernel=nms_kernel_size)
_scores = torch.permute(scores, (0, 2, 3, 1))
# Binary decision (keep confident detections)
idx = apply_threshold(det_thresh, _scores)
# Scores
scores_detected = scores[idx[0], idx[3], idx[1],idx[2]] # scores of the detected humans only
scores = torch.permute(scores, (0, 2, 3, 1))
return scores, scores_detected, idx
def embedd_camera(self, K, z):
""" Embed viewing directions using fourrier encoding."""
bs = z.shape[0]
_h, _w = list(z.shape[-2:])
points = torch.stack([torch.arange(0,_h,1).reshape(-1,1).repeat(1,_w), torch.arange(0,_w,1).reshape(1,-1).repeat(_h,1)],-1).to(z.device).float() # [h,w,2]
points = points * self.patch_size + self.patch_size // 2 # move to pixel space - we give the pixel center of each token
points = points.reshape(1,-1,2).repeat(bs,1,1) # (bs, N, 2): 2D points
distance = torch.ones(bs,points.shape[1],1).to(K.device) # (bs, N, 1): distance in the 3D world
rays = inverse_perspective_projection(points, K, distance) # (bs, N, 3)
rays_embeddings = self.camera(pos=rays)
# Repeat for each element of the batch
z_K = rays_embeddings.reshape(bs,_h,_w,self.camera_embed_dim) # [bs,h,w,D]
return z_K
def to_euclidean_dist(self, x, dist, _K):
# Focal length normalization
focal = _K[:,[0],[0]]
dist = undo_focal_length_normalization(dist, focal, fovn=self.fovn, img_size=x.shape[-1])
# log space
if self.nearness:
dist = undo_log_depth(dist)
# Clamping
if self.clip_dist:
dist = torch.clamp(dist, 0, 50)
return dist
def forward(self,
x,
idx=None,
det_thresh=0.5,
nms_kernel_size=3,
K=None,
*args,
**kwargs):
"""
Forward pass of the model and compute the loss according to the groundtruth
Args:
- x: RGB image - [bs,3,224,224]
- idx: GT location of persons - tuple of 3 tensor of shape [p]
- idx_j2d: GT location of 2d-kpts for each detected humans - tensor of shape [bs',14,2] - location in pixel space
Return:
- y: [bs,D,16,16]
"""
persons = []
out = {}
# Feature extraction
z = self.backbone(x)
B,N,C = z.size() # [bs,256,768]
# Detection
scores, scores_det, idx = self.detection(z, nms_kernel_size=nms_kernel_size, det_thresh=det_thresh, N=N)
if len(idx[0]) == 0:
# no humans detected in the frame
return persons
# Map of Dense Feature
z = unpatch(z, patch_size=1, c=z.shape[2], img_size=int(np.sqrt(N))) # [bs,D,16,16]
z_all = z
# Extract the 'central' features
z = torch.reshape(z, (z.shape[0], 1, z.shape[1]//1, z.shape[2], z.shape[3])) # [bs,stack_K,D,16,16]
z_central = z[idx[0],idx[3],:,idx[1],idx[2]] # dense vectors
# 2D offset regression
offset = self.mlp_offset(z_central)
# Camera instrincs
K_det = K[idx[0]] # cameras for detected person
z_K = self.embedd_camera(K, z) # Embed viewing directions.
z_central = torch.cat([z_central, z_K[idx[0],idx[1], idx[2]]], 1) # Add to query tokens.
z_all = torch.cat([z_all, z_K.permute(0,3,1,2)], 1) # for the cross-attention only
z = torch.cat([z, z_K.permute(0,3,1,2).unsqueeze(1)],2)
# Distance for estimating the 3D location in 3D space
loc = torch.stack([idx[2],idx[1]]).permute(1,0) # Moving from higher resolution the location of the pelvis
loc = (loc + 0.5 + offset ) * self.patch_size
# SMPL parameter regression
kv = z_all[idx[0]] # retrieving dense features associated to each central vector
pred_smpl_params, pred_cam = self.x_attention_head(z_central, kv, idx_0=idx[0], idx_det=idx)
# Get outputs from the SMPL layer.
shape = pred_smpl_params['betas']
rotmat = torch.cat([pred_smpl_params['global_orient'],pred_smpl_params['body_pose']], 1)
expression = pred_smpl_params['expression']
rotvec = roma.rotmat_to_rotvec(rotmat)
# Distance
dist = pred_cam[:, 0][:, None]
out['dist_postprocessed'] = dist # before applying any post-processing such as focal length normalization, inverse or log
dist = self.to_euclidean_dist(x, dist, K_det)
# Populate output dictionnary
out.update({'scores': scores, 'offset': offset, 'dist': dist, 'expression': expression,
'rotmat': rotmat, 'shape': shape, 'rotvec': rotvec, 'loc': loc})
assert rotvec.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0], "Incoherent shapes"
# Neutral
smpl_out = self.smpl_layer['neutral'](rotvec, shape, loc, dist, None, K=K_det, expression=expression)
out.update(smpl_out)
# Populate a dictionnary for each person
for i in range(idx[0].shape[0]):
person = {
# Detection
'scores': scores_det[i], # detection scores
'loc': out['loc'][i], # 2d pixel location of the primary keypoints
# SMPL-X params
'transl': out['transl'][i], # from the primary keypoint i.e. the head
'transl_pelvis': out['transl_pelvis'][i], # of the pelvis joint
'rotvec': out['rotvec'][i],
'expression': out['expression'][i],
'shape': out['shape'][i],
# SMPL-X meshs
'verts_smplx': out['verts_smplx_cam'][i],
'j3d_smplx': out['j3d'][i],
'j2d_smplx': out['j2d'][i],
}
persons.append(person)
return persons
class HPH(nn.Module):
""" Cross-attention based SMPL Transformer decoder
Code modified from:
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/heads/smpl_head.py#L17
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301
"""
def __init__(self,
num_body_joints=52,
context_dim=1280,
dim=1024,
depth=2,
heads=8,
mlp_dim=1024,
dim_head=64,
dropout=0.0,
emb_dropout=0.0,
at_token_res=32,
):
super().__init__()
self.joint_rep_type, self.joint_rep_dim = '6d', 6
self.num_body_joints = num_body_joints
self.nrot = self.num_body_joints + 1
npose = self.joint_rep_dim * (self.num_body_joints + 1)
self.npose = npose
self.depth = depth,
self.heads = heads,
self.res = at_token_res
self.input_is_mean_shape = True
_context_dim = context_dim # for the central features
# Transformer Decoder setup.
# Based on https://github.com/shubham-goel/4D-Humans/blob/8830bb330558eea2395b7f57088ef0aae7f8fa22/hmr2/configs_hydra/experiment/hmr_vit_transformer.yaml#L35
transformer_args = dict(
num_tokens=1,
token_dim=(npose + 10 + 3 + _context_dim) if self.input_is_mean_shape else 1,
dim=dim,
depth=depth,
heads=heads,
mlp_dim=mlp_dim,
dim_head=dim_head,
dropout=dropout,
emb_dropout=emb_dropout,
context_dim=context_dim,
)
self.transformer = TransformerDecoder(**transformer_args)
dim = transformer_args['dim']
# Final decoders to regress targets
self.decpose, self.decshape, self.deccam, self.decexpression = [nn.Linear(dim, od) for od in [npose, 10, 3, 10]]
# Register bufffers for the smpl layer.
self.set_smpl_init()
# Init learned embeddings for the cross attention queries
self.init_learned_queries(context_dim)
def init_learned_queries(self, context_dim, std=0.2):
""" Init learned embeddings for queries"""
self.cross_queries_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_x, std=std)
self.cross_queries_y = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_y, std=std)
self.cross_values_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_values_x, std=std)
self.cross_values_y = nn.Parameter(nn.Parameter(torch.zeros(self.res, context_dim)))
torch.nn.init.normal_(self.cross_values_y, std=std)
def set_smpl_init(self):
""" Fetch saved SMPL parameters and register buffers."""
mean_params = np.load(MEAN_PARAMS)
if self.nrot == 53:
init_body_pose = torch.eye(3).reshape(1,3,3).repeat(self.nrot,1,1)[:,:,:2].flatten(1).reshape(1, -1)
init_body_pose[:,:24*6] = torch.from_numpy(mean_params['pose'][:]).float() # global_orient+body_pose from SMPL
else:
init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0)
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0)
init_betas_kid = torch.cat([init_betas, torch.zeros_like(init_betas[:,[0]])],1)
init_expression = 0. * torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
self.register_buffer('init_body_pose', init_body_pose)
self.register_buffer('init_betas', init_betas)
self.register_buffer('init_betas_kid', init_betas_kid)
self.register_buffer('init_cam', init_cam)
self.register_buffer('init_expression', init_expression)
def cross_attn_inputs(self, x, x_central, idx_0, idx_det):
""" Reshape and pad x_central to have the right shape for Cross-attention processing.
Inject learned embeddings to query and key inputs at the location of detected people. """
h, w = x.shape[2], x.shape[3]
x = einops.rearrange(x, 'b c h w -> b (h w) c')
assert idx_0 is not None, "Learned cross queries only work with multicross"
if idx_0.shape[0] > 0:
# reconstruct the batch/nb_people dimensions: pad for images with fewer people than max.
counts, idx_det_0 = rebatch(idx_0, idx_det)
old_shape = x_central.shape
# Legacy check for old versions
assert idx_det is not None, 'idx_det needed for learned_attention'
# xx is the tensor with all features
xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
# Get learned embeddings for queries, at positions with detected people.
queries_xy = self.cross_queries_x[idx_det[1]] + self.cross_queries_y[idx_det[2]]
# Add the embedding to the central features.
x_central = x_central + queries_xy
assert x_central.shape == old_shape, "Problem with shape"
# Make it a tensor of dim. [batch, max_ppl_along_batch, ...]
x_central, mask = pad_to_max(x_central, counts)
#xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
xx = xx[torch.cumsum(counts, dim=0)-1]
# Inject leared embeddings for key/values at detected locations.
values_xy = self.cross_values_x[idx_det[1]] + self.cross_values_y[idx_det[2]]
xx[idx_det_0, :, idx_det[1], idx_det[2]] += values_xy
x = einops.rearrange(xx, 'b c h w -> b (h w) c')
num_ppl = x_central.shape[1]
else:
mask = None
num_ppl = 1
counts = None
return x, x_central, mask, num_ppl, counts
def forward(self,
x_central,
x,
idx_0=None,
idx_det=None,
**kwargs):
""""
Forward the HPH module.
"""
batch_size = x.shape[0]
# Reshape inputs for cross attention and inject learned embeddings for queries and values.
x, x_central, mask, num_ppl, counts = self.cross_attn_inputs(x, x_central, idx_0, idx_det)
# Add init (mean smpl params) to the query for each quantity being regressed.
bs = x_central.shape[0] if idx_0.shape[0] else batch_size
expand = lambda x: x.expand(bs, num_ppl , -1)
pred_body_pose, pred_betas, pred_cam, pred_expression = [expand(x) for x in
[self.init_body_pose, self.init_betas, self.init_cam, self.init_expression]]
token = torch.cat([x_central, pred_body_pose, pred_betas, pred_cam], dim=-1)
if len(token.shape) == 2:
token = token[:,None,:]
# Process query and inputs with the cross-attention module.
token_out = self.transformer(token, context=x, mask=mask)
# Reshape outputs from [batch_size, nmax_ppl, ...] to [total_ppl, ...]
if mask is not None:
# Stack along batch axis.
token_out_list = [token_out[i, :c, ...] for i, c in enumerate(counts)]
token_out = torch.concat(token_out_list, dim=0)
else:
token_out = token_out.squeeze(1) # (B, C)
# Decoded output token and add to init for each quantity to regress.
reshape = (lambda x: x) if idx_0.shape[0] == 0 else (lambda x: x[0, 0, ...][None, ...])
decoders = [self.decpose, self.decshape, self.deccam, self.decexpression]
inits = [pred_body_pose, pred_betas, pred_cam, pred_expression]
pred_body_pose, pred_betas, pred_cam, pred_expression = [d(token_out) + reshape(i) for d, i in zip(decoders, inits)]
# Convert self.joint_rep_type -> rotmat
joint_conversion_fn = rot6d_to_rotmat
# conversion
pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, self.num_body_joints+1, 3, 3)
# Build the output dict
pred_smpl_params = {'global_orient': pred_body_pose[:, [0]],
'body_pose': pred_body_pose[:, 1:],
'betas': pred_betas,
#'betas_kid': pred_betas_kid,
'expression': pred_expression}
return pred_smpl_params, pred_cam #, pred_smpl_params_list
def regression_mlp(layers_sizes):
"""
Return a fully connected network.
"""
assert len(layers_sizes) >= 2
in_features = layers_sizes[0]
layers = []
for i in range(1, len(layers_sizes)-1):
out_features = layers_sizes[i]
layers.append(torch.nn.Linear(in_features, out_features))
layers.append(torch.nn.ReLU())
in_features = out_features
layers.append(torch.nn.Linear(in_features, layers_sizes[-1]))
return torch.nn.Sequential(*layers)
def apply_threshold(det_thresh, _scores):
""" Apply thresholding to detection scores; if stack_K is used and det_thresh is a list, apply to each channel separately """
if isinstance(det_thresh, list):
det_thresh = det_thresh[0]
idx = torch.where(_scores >= det_thresh)
return idx
def _nms(heat, kernel=3):
""" easy non maximal supression (as in CenterNet) """
if kernel not in [2, 4]:
pad = (kernel - 1) // 2
else:
if kernel == 2:
pad = 1
else:
pad = 2
hmax = nn.functional.max_pool2d( heat, (kernel, kernel), stride=1, padding=pad)
if hmax.shape[2] > heat.shape[2]:
hmax = hmax[:, :, :heat.shape[2], :heat.shape[3]]
keep = (hmax == heat).float()
return heat * keep
def _sigmoid(x):
y = torch.clamp(x.sigmoid_(), min=1e-4, max=1-1e-4)
return y
if __name__ == "__main__":
Model()
|