File size: 7,311 Bytes
bb3ea39
 
dd504c0
880da41
dd504c0
402b433
880da41
402b433
 
 
880da41
497a5c7
bb3ea39
f4b82b2
9651aac
e7c9542
 
dd504c0
 
402b433
 
f4b82b2
c9dadbf
f4b82b2
351ead9
 
f4b82b2
 
 
 
 
 
c9dadbf
f4b82b2
 
 
 
 
9651aac
0f77bb9
c9dadbf
 
 
0f77bb9
 
 
 
 
 
 
 
 
 
 
c712472
 
f4b82b2
f981819
 
f4b82b2
c9dadbf
 
689e965
402b433
 
 
 
689e965
402b433
 
 
 
 
 
 
 
 
7c408ba
 
402b433
 
 
 
 
0f77bb9
402b433
 
 
 
 
 
dd504c0
402b433
 
722b0aa
e52b6e6
0f77bb9
402b433
dd504c0
402b433
 
dd504c0
 
402b433
 
 
 
 
 
 
 
dca7dd8
0f77bb9
 
402b433
dd504c0
402b433
dd504c0
 
 
402b433
 
 
 
 
 
 
f4b82b2
0f77bb9
 
3d3c7f5
0f77bb9
a0c42c4
 
0f77bb9
a0c42c4
0f77bb9
 
3d3c7f5
0f77bb9
a0c42c4
0f77bb9
 
a0c42c4
 
 
 
 
 
 
 
ce1e3e0
 
dca7dd8
 
 
 
0f77bb9
1a2db09
 
 
 
274f0f4
1a2db09
 
 
dca7dd8
 
274f0f4
0f77bb9
dca7dd8
 
 
1a2db09
 
 
0f77bb9
 
 
 
 
 
 
 
 
 
 
74bae21
1a2db09
0f77bb9
2134c75
1a2db09
 
dca7dd8
0f77bb9
 
 
 
1a2db09
2134c75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr

import cv2

import torch

import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib import colors
from mpl_toolkits.axes_grid1 import ImageGrid

from torchvision import transforms

import fire_network

import numpy as np



from PIL import Image

# Possible Scales for multiscale inference
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25] 

device = 'cpu'

# Load net
state = torch.load('fire.pth', map_location='cpu')
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
net = fire_network.init_network(**state['net_params']).to(device)
net.load_state_dict(state['state_dict'])

transform = transforms.Compose([
        transforms.Resize(1024),
        transforms.ToTensor(), 
        transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
        ])


# sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]

col = plt.get_cmap('tab10')

def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50, sf_ids=''):
    print('im1:', im1.size)
    print('im2:', im2.size)
    # which sf 
    sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
    if sf_ids.lower().startswith('r'):
        n_sf_ids = int(sf_ids[1:])
        sf_idx_ = np.random.randint(256, size=n_sf_ids)
    elif sf_ids != '':
        sf_idx_ = map(int, sf_ids.strip().split(','))
    
    im1_tensor = transform(im1).unsqueeze(0)
    im2_tensor = transform(im2).unsqueeze(0)

    im1_cv = np.array(im1)[:, :, ::-1].copy() 
    im2_cv = np.array(im2)[:, :, ::-1].copy() 

    # extract features
    with torch.no_grad():
        output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scales[scale_id]])
        feats1 = output1[0][0]
        attns1 = output1[1][0]
        strenghts1 = output1[2][0]

        output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scales[scale_id]])
        feats2 = output2[0][0]
        attns2 = output2[1][0]
        strenghts2 = output2[2][0]

    print(feats1.shape, feats2.shape)
    print(attns1.shape, attns2.shape)
    print(strenghts1.shape, strenghts2.shape)
    
    # Store all binary SF att maps to show them all at once in the end
    all_att_bin1 = []
    all_att_bin2 = []
    for n, i in enumerate(sf_idx_):
        # all_atts[n].append(attn[j][scale_id][0,i,:,:].numpy())
        att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
        att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
        att_heat_bin  = np.where(att_heat>threshold, 255, 0)
        # print(att_heat_bin)
        all_att_bin1.append(att_heat_bin)

        att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
        att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
        att_heat_bin  = np.where(att_heat>threshold, 255, 0)
        all_att_bin2.append(att_heat_bin)

    
    fin_img = []
    img1rsz = np.copy(im1_cv)
    print('im1:', im1.size)
    print('img1rsz:', img1rsz.shape)
    for j, att in enumerate(all_att_bin1):
        att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
        # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
        # att = cv2.resize(att, imgz[i].shape[:2][::-1])
        # att = att.resize(shape)
        # att = resize(att, im1.size)
        mask2d = zip(*np.where(att==255))
        for m,n in mask2d:
            col_ = col.colors[j] if j < 7 else col.colors[j+1]
            if j == 0: col_ = col.colors[9]
            col_ = 255*np.array(colors.to_rgba(col_))[:3]
            img1rsz[m,n, :] = col_[::-1]   
    fin_img.append(img1rsz)
            
    img2rsz = np.copy(im2_cv)
    print('im2:', im2.size)
    print('img2rsz:', img2rsz.shape)
    for j, att in enumerate(all_att_bin2):
        att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
        # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
        # # att = cv2.resize(att, imgz[i].shape[:2][::-1])
        # att = att.resize(im2.shape)
        # print('att:', att.shape)
        mask2d = zip(*np.where(att==255))
        for m,n in mask2d:
            col_ = col.colors[j] if j < 7 else col.colors[j+1]
            if j == 0: col_ = col.colors[9]
            col_ = 255*np.array(colors.to_rgba(col_))[:3]
            img2rsz[m,n, :] = col_[::-1]   
    fin_img.append(img2rsz)

    fig1 = plt.figure(1)
    plt.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
    ax1 = plt.gca()
    # ax1.axis('scaled')
    ax1.axis('off')
    plt.tight_layout()    
    # fig1.canvas.draw()
    
    fig2 = plt.figure(2)
    plt.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
    ax2 = plt.gca()
    # ax2.axis('scaled')
    ax2.axis('off')
    plt.tight_layout()    
    # fig2.canvas.draw()
       
    # fig = plt.figure()
    # grid = ImageGrid(fig, 111, nrows_ncols=(2, 1),  axes_pad=0.1)
    # for ax, img in zip(grid, fin_img):
    #     ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    #     ax.axis('scaled')
    #     ax.axis('off')
    # plt.tight_layout()
    # fig.suptitle("Matching SFs", fontsize=16)

    # fig.canvas.draw()
    # # Now we can save it to a numpy array.
    # data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
    # data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    return fig1, fig2, ','.join(map(str, sf_idx_))


# GRADIO APP
title = "Visualizing Super-features"
description = "This is a visualization demo for the ICLR 2022 paper <b><a href='https://github.com/naver/fire' target='_blank'>Learning Super-Features for Image Retrieval</a></p></b>" 
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>"


# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
# css = ".output_image, .input_image {hieght: 1000px !important}"
css = ".input_image, .input_image {height: 600px !important; width: 600px !important;} "
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"


iface = gr.Interface(
    fn=generate_matching_superfeatures,
    inputs=[
#        gr.inputs.Image(shape=(1024, 1024), type="pil", label="First Image"),
#        gr.inputs.Image(shape=(1024, 1024), type="pil", label="Second Image"),
        gr.inputs.Image(type="pil", label="First Image"),
        gr.inputs.Image(type="pil", label="Second Image"),
        gr.inputs.Slider(minimum=0, maximum=6, step=1, default=2, label="Scale"),
        gr.inputs.Slider(minimum=1, maximum=255, step=25, default=100, label="Binarization Threshold"),
        gr.inputs.Textbox(lines=1, default="", label="SF IDs to show (comma separated numbers from 0-255; typing 'rX' will return X random SFs", optional=True)],
    outputs=[
        "plot", 
        "plot", 
        gr.outputs.Textbox(label="SFs")],
    # outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
    title=title,
    theme='peach',
    layout="horizontal",
    description=description,
    article=article,
    css=css,
    examples=[
        ["chateau_1.png", "chateau_2.png", 2, 100, '55,14,5,4,52,57,40,9'],
        ["anafi1.jpeg", "anafi2.jpeg", 4, 50, '99,100,142,213,236']        
    ],
)
iface.launch(enable_queue=True)