File size: 10,651 Bytes
bb3ea39
 
dd504c0
880da41
dd504c0
5dfb000
 
aa5e40b
 
402b433
880da41
402b433
 
 
880da41
f4b82b2
9651aac
e7c9542
 
402b433
 
f4b82b2
c9dadbf
f4b82b2
351ead9
 
22a02d6
f4b82b2
 
b3806d2
 
cb6bc7f
 
 
 
 
f4b82b2
b3806d2
cb6bc7f
1d018e4
ce415a7
1d018e4
5dfb000
 
092e211
 
 
0f68393
092e211
5dfb000
 
5d89783
 
 
 
 
 
 
 
 
 
 
 
 
5dfb000
b489890
5dfb000
ea2b2ef
 
 
eee2bf2
ea2b2ef
 
c8e8ad1
a15c1b9
ea2b2ef
 
 
 
 
 
 
 
 
 
 
 
 
9651aac
0f77bb9
b2bf1e7
 
 
 
 
c9dadbf
 
 
f7b2f96
0f77bb9
 
c1911e8
b2bf1e7
 
b3806d2
0cb19e3
b3806d2
5dfb000
388a978
 
5dfb000
 
b489890
 
f4b82b2
f981819
 
f4b82b2
c9dadbf
 
092e211
 
 
 
 
 
 
 
 
ea2b2ef
c1911e8
 
6bc6828
ea2b2ef
 
 
092e211
 
 
 
 
 
 
 
 
402b433
 
 
 
c1911e8
 
9fec9a2
 
c1911e8
9fec9a2
c1911e8
cc9878d
c1911e8
cb3d625
 
 
 
 
 
c1911e8
402b433
7c408ba
 
402b433
 
 
 
 
0f77bb9
402b433
 
 
 
 
 
dd504c0
402b433
 
722b0aa
e52b6e6
0f77bb9
402b433
7022373
402b433
 
dd504c0
 
402b433
 
 
 
 
 
 
dca7dd8
0f77bb9
 
402b433
7022373
402b433
dd504c0
 
 
402b433
 
8222092
 
 
402b433
 
f4b82b2
0f77bb9
 
3d3c7f5
0f77bb9
a0c42c4
 
0f77bb9
a0c42c4
0f77bb9
 
3d3c7f5
0f77bb9
a0c42c4
0f77bb9
 
cc9878d
 
8222092
8ff5253
f7b2f96
8ff5253
a92520a
9180d7e
 
 
 
8ff5253
 
cc9878d
8ff5253
cc9878d
1a2db09
 
 
 
274f0f4
1a2db09
 
 
 
 
0f77bb9
 
 
 
0cb19e3
0f77bb9
b3806d2
0cb19e3
 
f7b2f96
36eb9c8
0f77bb9
06125bf
 
cc9878d
 
74bae21
1a2db09
0f77bb9
2134c75
1a2db09
 
0f77bb9
f7b2f96
 
 
700c051
1a2db09
2134c75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr

import cv2

import torch
import torch.utils.data as data
from torchvision import transforms
from torch import nn
import torch.nn.functional as F

import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib import colors
from mpl_toolkits.axes_grid1 import ImageGrid

import fire_network

import numpy as np

from PIL import Image

# Possible Scales for multiscale inference
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25] 

device = 'cpu'

# Load nets
state = torch.load('fire.pth', map_location='cpu')
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
net_sfm = fire_network.init_network(**state['net_params']).to(device)
net_sfm.load_state_dict(state['state_dict'])
dim_red_params_dict = {}
for name, param in net_sfm.named_parameters():
    if 'dim_reduction' in name:
        dim_red_params_dict[name] = param


state2 = torch.load('fire_imagenet.pth', map_location='cpu')
state2['net_params'] = state['net_params']
state2['state_dict'] = dict(state2['state_dict'], **dim_red_params_dict);
net_imagenet = fire_network.init_network(**state['net_params']).to(device)
net_imagenet.load_state_dict(state2['state_dict'], strict=False)

# ---------------------------------------
transform = transforms.Compose([
        transforms.Resize(1024),
        transforms.ToTensor(), 
        transforms.Normalize(**dict(zip(["mean", "std"], net_sfm.runtime['mean_std'])))
        ])
# ---------------------------------------

# class ImgDataset(data.Dataset):
#     def __init__(self, images, imsize):
#         self.images = images
#         self.imsize = imsize
#         self.transform = transforms.Compose([transforms.ToTensor(), \
#             transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))])
#     def __getitem__(self, index):
#         img = self.images[index]
#         img.thumbnail((self.imsize, self.imsize), Image.Resampling.LANCZOS)
#         print('after imresize:', img.size)
#         return  self.transform(img)
#     def __len__(self):
#         return len(self.images)

# ---------------------------------------    

def match(query_feat, pos_feat, LoweRatioTh=0.9):
    # first perform reciprocal nn
    dist = torch.cdist(query_feat, pos_feat)
    print('dist.size',dist.size())
    best1 = torch.argmin(dist, dim=1)
    best2 = torch.argmin(dist, dim=0)
    print('best2.size',best2.size())
    arange = torch.arange(best2.size(0))
    reciprocal = best1[best2]==arange
    # check Lowe ratio test
    dist2 = dist.clone()
    dist2[best2,arange] = float('Inf')
    dist2_second2 = torch.argmin(dist2, dim=0)
    ratio1to2 = dist[best2,arange] / dist2_second2
    valid = torch.logical_and(reciprocal, ratio1to2<=LoweRatioTh)
    pindices = torch.where(valid)[0]
    qindices = best2[pindices]
    # keep only the ones with same indices 
    valid = pindices==qindices
    return pindices[valid]
    

# sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
def clear_figures():
    plt.figure().clear()
    plt.close()
    plt.cla()
    plt.clf()

col = plt.get_cmap('tab10')

def generate_matching_superfeatures(im1, im2, Imagenet_model=False, scale_id=6, threshold=50, random_mode=False, sf_ids=''): #, only_matching=True):
    print('im1:', im1.size)
    print('im2:', im2.size)

    clear_figures()

    net = net_sfm
    if Imagenet_model:
        net = net_imagenet

    # dataset_ = ImgDataset(images=[im1, im2], imsize=1024)
    # loader = torch.utils.data.DataLoader(dataset_, shuffle=False, pin_memory=True)


    im1_tensor = transform(im1).unsqueeze(0)
    im2_tensor = transform(im2).unsqueeze(0)

    im1_cv = np.array(im1)[:, :, ::-1].copy() 
    im2_cv = np.array(im2)[:, :, ::-1].copy() 

    # extract features
    with torch.no_grad():
        output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scales[scale_id]])
        feats1 = output1[0][0]
        attns1 = output1[1][0]
        strenghts1 = output1[2][0]

        output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scales[scale_id]])
        feats2 = output2[0][0]
        attns2 = output2[1][0]
        strenghts2 = output2[2][0]

        feats1n = F.normalize(torch.t(torch.squeeze(feats1)), dim=1)
        feats2n = F.normalize(torch.t(torch.squeeze(feats2)), dim=1)
        print('feats1n.shape', feats1n.shape)
        ind_match = match(feats1n, feats2n)
        print('ind', ind_match)
        print('ind.shape', ind_match.shape)
        # outputs = []
        # for im_tensor in loader:
        #     outputs.append(net.get_superfeatures(im_tensor.to(device), scales=[scales[scale_id]]))
        # feats1 = outputs[0][0][0]
        # attns1 = outputs[0][1][0]
        # strenghts1 = outputs[0][2][0]
        # feats2 = outputs[1][0][0]
        # attns2 = outputs[1][1][0]
        # strenghts2 = outputs[1][2][0]
    print(feats1.shape, feats2.shape)
    print(attns1.shape, attns2.shape)
    print(strenghts1.shape, strenghts2.shape)
    
    # which sf 
    sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
    n_sf_ids = 8
    if random_mode or sf_ids == '':
        sf_idx_ = np.random.randint(256, size=n_sf_ids)
    else:
        sf_idx_ = map(int, sf_ids.strip().split(','))
        n_sf_ids = len(sf_idx_)
        
    # if only_matching:
    if random_mode:
        sf_idx_ = [int(jj) for jj in ind_match[np.random.randint(len(list(ind_match)), size=n_sf_ids)].numpy()]
        sf_idx_ = list( dict.fromkeys(sf_idx_) )
    else:
        sf_idx_ = [i for i in sf_idx_ if i in list(ind_match)]

    # Store all binary SF att maps to show them all at once in the end
    all_att_bin1 = []
    all_att_bin2 = []
    for n, i in enumerate(sf_idx_):
        # all_atts[n].append(attn[j][scale_id][0,i,:,:].numpy())
        att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
        att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
        att_heat_bin  = np.where(att_heat>threshold, 255, 0)
        # print(att_heat_bin)
        all_att_bin1.append(att_heat_bin)

        att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
        att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
        att_heat_bin  = np.where(att_heat>threshold, 255, 0)
        all_att_bin2.append(att_heat_bin)

    
    fin_img = []
    img1rsz = np.copy(im1_cv)
    print('im1:', im1.size)
    print('img1rsz:', img1rsz.shape)
    for j, att in enumerate(all_att_bin1):
        att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
        # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
        # att = cv2.resize(att, imgz[i].shape[:2][::-1])
        # att = att.resize(shape)
        # att = resize(att, im1.size)
        mask2d = zip(*np.where(att==255))
        for m,n in mask2d:
            col_ = col.colors[j] if j < 7 else col.colors[j+1]
            if j == 0: col_ = col.colors[9]
            col_ = 255*np.array(colors.to_rgba(col_))[:3]
            img1rsz[m,n, :] = col_[::-1]   
            
    img2rsz = np.copy(im2_cv)
    print('im2:', im2.size)
    print('img2rsz:', img2rsz.shape)
    for j, att in enumerate(all_att_bin2):
        att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
        # att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
        # # att = cv2.resize(att, imgz[i].shape[:2][::-1])
        # att = att.resize(im2.shape)
        # print('att:', att.shape)
        mask2d = zip(*np.where(att==255))
        for m,n in mask2d:
            col_ = col.colors[j]
            # col_ = col.colors[j] if j < 7 else col.colors[j+1]
            # if j == 0: col_ = col.colors[9]
            col_ = 255*np.array(colors.to_rgba(col_))[:3]
            img2rsz[m,n, :] = col_[::-1]   

    fig1 = plt.figure(1)
    plt.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
    ax1 = plt.gca()
    # ax1.axis('scaled')
    ax1.axis('off')
    plt.tight_layout()    
    # fig1.canvas.draw()
    
    fig2 = plt.figure(2)
    plt.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
    ax2 = plt.gca()
    # ax2.axis('scaled')
    ax2.axis('off')
    plt.tight_layout()    
    # fig2.canvas.draw()
    
    f = lambda m,c: plt.plot([],[],marker=m, color=c, ls="none")[0]
    handles = [f("s", col.colors[i]) for i in range(n_sf_ids)]
    fig_leg = plt.figure(3)
    legend = plt.legend(handles, sf_idx_, framealpha=1, frameon=False, facecolor='w',fontsize=15, loc="center")
    # fig_leg  = legend.figure
    # fig_leg.canvas.draw()
    ax3 = plt.gca()
    # ax2.axis('scaled')
    ax3.axis('off')
    plt.tight_layout()    
    # bbox  = legend.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
    

    return fig1, fig2, fig_leg
    # ','.join(map(str, sf_idx_))


# GRADIO APP
title = "Visualizing Super-features"
description = "This is a visualization demo for the ICLR 2022 paper <b><a href='https://github.com/naver/fire' target='_blank'>Learning Super-Features for Image Retrieval</a></p></b>" 
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>"

iface = gr.Interface(
    fn=generate_matching_superfeatures,
    inputs=[
#        gr.inputs.Image(shape=(1024, 1024), type="pil", label="First Image"),
#        gr.inputs.Image(shape=(1024, 1024), type="pil", label="Second Image"),
        gr.inputs.Image(type="pil", label="First Image"),
        gr.inputs.Image(type="pil", label="Second Image"),
        gr.inputs.Checkbox(default=False, label="Model trained on ImageNet (Default: SfM-120k)"),
        gr.inputs.Slider(minimum=0, maximum=6, step=1, default=2, label="Scale"),
        gr.inputs.Slider(minimum=0, maximum=255, step=25, default=150, label="Binarization Threshold"),
        gr.inputs.Checkbox(default=False, label="Show random (matching) SFs"),
        gr.inputs.Textbox(lines=1, default="", label="...or show specific SF IDs:", optional=True),
        # gr.inputs.Checkbox(default=True, label="Show only matching SFs"),
        ],
    outputs=[
        gr.outputs.Image(type="plot", label="First Image SFs"),
        gr.outputs.Image(type="plot", label="Second Image SFs"),
        gr.outputs.Image(type="plot", label="SF legend")],
        # gr.outputs.Textbox(label="SFs")],
    # outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
    title=title,
    theme='peach',
    layout="horizontal",
    description=description,
    article=article,
    examples=[
        ["chateau_1.png", "chateau_2.png", False, 3, 150, True, ''],
        ["anafi1.jpeg", "anafi2.jpeg", False, 4, 150, True, ''],
        ["areopoli1.jpeg", "areopoli2.jpeg", False, 4, 150, True, ''],
    ]
)
iface.launch(enable_queue=True)