Spaces:
Build error
Build error
File size: 15,368 Bytes
32408ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
"""Implements evaluation of trained models"""
import time
import warnings
from pathlib import Path
import pickle
import numpy as np
import torch
from torchvision import transforms
from PIL import ImageFile
from cirtorch.datasets.genericdataset import ImagesFromList
from asmk import asmk_method, kernel as kern_pkg
from ..networks import how_net
from ..utils import score_helpers, data_helpers, logging
ImageFile.LOAD_TRUNCATED_IMAGES = True
warnings.filterwarnings("ignore", r"^Possibly corrupt EXIF data", category=UserWarning)
def evaluate_demo(demo_eval, evaluation, globals):
"""Demo evaluating a trained network
:param dict demo_eval: Demo-related options
:param dict evaluation: Evaluation-related options
:param dict globals: Global options
"""
globals["device"] = torch.device("cpu")
if demo_eval['gpu_id'] is not None:
globals["device"] = torch.device(("cuda:%s" % demo_eval['gpu_id']))
# Handle net_path when directory
net_path = Path(demo_eval['exp_folder']) / demo_eval['net_path']
if net_path.is_dir() and (net_path / "epochs/model_best.pth").exists():
net_path = net_path / "epochs/model_best.pth"
# Load net
state = _convert_checkpoint(torch.load(net_path, map_location='cpu'))
net = how_net.init_network(**state['net_params']).to(globals['device'])
net.load_state_dict(state['state_dict'])
globals["transform"] = transforms.Compose([transforms.ToTensor(), \
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))])
# Eval
if evaluation['global_descriptor']['datasets']:
eval_global(net, evaluation['inference'], globals, **evaluation['global_descriptor'])
if evaluation['multistep']:
eval_asmk_multistep(net, evaluation['inference'], evaluation['multistep'], globals, **evaluation['local_descriptor'])
elif evaluation['local_descriptor']['datasets']:
eval_asmk(net, evaluation['inference'], globals, **evaluation['local_descriptor'])
def eval_global(net, inference, globals, *, datasets):
"""Evaluate global descriptors"""
net.eval()
time0 = time.time()
logger = globals["logger"]
logger.info("Starting global evaluation")
results = {}
for dataset in datasets:
images, qimages, bbxs, gnd = data_helpers.load_dataset(dataset, data_root=globals['root_path'])
logger.info(f"Evaluating {dataset}")
with logging.LoggingStopwatch("extracting database images", logger.info, logger.debug):
dset = ImagesFromList(root='', images=images, imsize=inference['image_size'], bbxs=None,
transform=globals['transform'])
vecs = how_net.extract_vectors(net, dset, globals["device"], scales=inference['scales'])
with logging.LoggingStopwatch("extracting query images", logger.info, logger.debug):
qdset = ImagesFromList(root='', images=qimages, imsize=inference['image_size'], bbxs=bbxs,
transform=globals['transform'])
qvecs = how_net.extract_vectors(net, qdset, globals["device"], scales=inference['scales'])
vecs, qvecs = vecs.numpy(), qvecs.numpy()
ranks = np.argsort(-np.dot(vecs, qvecs.T), axis=0)
results[dataset] = score_helpers.compute_map_and_log(dataset, ranks, gnd, logger=logger)
logger.info(f"Finished global evaluation in {int(time.time()-time0) // 60} min")
return results
def eval_asmk(net, inference, globals, *, datasets, codebook_training, asmk):
"""Evaluate local descriptors with ASMK"""
net.eval()
time0 = time.time()
logger = globals["logger"]
logger.info("Starting asmk evaluation")
asmk = asmk_method.ASMKMethod.initialize_untrained(asmk)
asmk = asmk_train_codebook(net, inference, globals, logger, codebook_training=codebook_training,
asmk=asmk, cache_path=None)
results = {}
for dataset in datasets:
dataset_name = dataset if isinstance(dataset, str) else dataset['name']
images, qimages, bbxs, gnd = data_helpers.load_dataset(dataset, data_root=globals['root_path'])
logger.info(f"Evaluating '{dataset_name}'")
asmk_dataset = asmk_index_database(net, inference, globals, logger, asmk=asmk, images=images)
asmk_query_ivf(net, inference, globals, logger, dataset=dataset, asmk_dataset=asmk_dataset,
qimages=qimages, bbxs=bbxs, gnd=gnd, results=results,
cache_path=globals["exp_path"] / "query_results.pkl")
logger.info(f"Finished asmk evaluation in {int(time.time()-time0) // 60} min")
return results
def eval_asmk_multistep(net, inference, multistep, globals, *, datasets, codebook_training, asmk):
"""Evaluate local descriptors with ASMK"""
valid_steps = ["train_codebook", "aggregate_database", "build_ivf", "query_ivf", "aggregate_build_query"]
assert multistep['step'] in valid_steps, multistep['step']
net.eval()
time0 = time.time()
logger = globals["logger"]
(globals["exp_path"] / "eval").mkdir(exist_ok=True)
logger.info(f"Starting asmk evaluation step '{multistep['step']}'")
# Handle partitioning
partition = {"suffix": "", "norm_start": 0, "norm_end": 1}
if multistep.get("partition"):
total, index = multistep['partition']
partition = {"suffix": f":{total}_{str(index).zfill(len(str(total-1)))}",
"norm_start": index / total,
"norm_end": (index+1) / total}
if multistep['step'] == "aggregate_database" or multistep['step'] == "query_ivf":
logger.info(f"Processing partition '{total}_{index}'")
# Handle distractors
distractors_path = None
distractors = multistep.get("distractors")
if distractors:
distractors_path = globals["exp_path"] / f"eval/{distractors}.ivf.pkl"
# Train codebook
asmk = asmk_method.ASMKMethod.initialize_untrained(asmk)
cdb_path = globals["exp_path"] / "eval/codebook.pkl"
if multistep['step'] == "train_codebook":
asmk_train_codebook(net, inference, globals, logger, codebook_training=codebook_training,
asmk=asmk, cache_path=cdb_path)
return None
asmk = asmk.train_codebook(None, cache_path=cdb_path)
results = {}
for dataset in datasets:
dataset_name = database_name = dataset if isinstance(dataset, str) else dataset['name']
if distractors and multistep['step'] != "aggregate_database":
dataset_name = f"{distractors}_{database_name}"
images, qimages, bbxs, gnd = data_helpers.load_dataset(dataset, data_root=globals['root_path'])
logger.info(f"Processing dataset '{dataset_name}'")
# Infer database
if multistep['step'] == "aggregate_database":
agg_path = globals["exp_path"] / f"eval/{database_name}.agg{partition['suffix']}.pkl"
asmk_aggregate_database(net, inference, globals, logger, asmk=asmk, images=images,
partition=partition, cache_path=agg_path)
# Build ivf
elif multistep['step'] == "build_ivf":
ivf_path = globals["exp_path"] / f"eval/{dataset_name}.ivf.pkl"
asmk_build_ivf(globals, logger, asmk=asmk, cache_path=ivf_path, database_name=database_name,
distractors=distractors, distractors_path=distractors_path)
# Query ivf
elif multistep['step'] == "query_ivf":
asmk_dataset = asmk.build_ivf(None, None, cache_path=globals["exp_path"] / f"eval/{dataset_name}.ivf.pkl")
start, end = int(len(qimages)*partition['norm_start']), int(len(qimages)*partition['norm_end'])
bbxs = bbxs[start:end] if bbxs is not None else None
results_path = globals["exp_path"] / f"eval/{dataset_name}.results{partition['suffix']}.pkl"
asmk_query_ivf(net, inference, globals, logger, dataset=dataset, asmk_dataset=asmk_dataset,
qimages=qimages[start:end], bbxs=bbxs, gnd=gnd, results=results,
cache_path=results_path, imid_offset=start)
# All 3 dataset steps
elif multistep['step'] == "aggregate_build_query":
if multistep.get("partition"):
raise NotImplementedError("Partitions within step 'aggregate_build_query' are not" \
" supported, use separate steps")
results_path = globals["exp_path"] / "query_results.pkl"
if gnd is None and results_path.exists():
logger.debug("Step results already exist")
continue
asmk_dataset = asmk_index_database(net, inference, globals, logger, asmk=asmk, images=images,
distractors_path=distractors_path)
asmk_query_ivf(net, inference, globals, logger, dataset=dataset, asmk_dataset=asmk_dataset,
qimages=qimages, bbxs=bbxs, gnd=gnd, results=results, cache_path=results_path)
logger.info(f"Finished asmk evaluation step '{multistep['step']}' in {int(time.time()-time0) // 60} min")
return results
#
# Separate steps
#
def asmk_train_codebook(net, inference, globals, logger, *, codebook_training, asmk, cache_path):
"""Asmk evaluation step 'train_codebook'"""
if cache_path and cache_path.exists():
return asmk.train_codebook(None, cache_path=cache_path)
images = data_helpers.load_dataset('train', data_root=globals['root_path'])[0]
images = images[:codebook_training['images']]
dset = ImagesFromList(root='', images=images, imsize=inference['image_size'], bbxs=None,
transform=globals['transform'])
infer_opts = {"scales": codebook_training['scales'], "features_num": inference['features_num']}
des_train = how_net.extract_vectors_local(net, dset, globals["device"], **infer_opts)[0]
asmk = asmk.train_codebook(des_train, cache_path=cache_path)
logger.info(f"Codebook trained in {asmk.metadata['train_codebook']['train_time']:.1f}s")
return asmk
def asmk_aggregate_database(net, inference, globals, logger, *, asmk, images, partition, cache_path):
"""Asmk evaluation step 'aggregate_database'"""
if cache_path.exists():
logger.debug("Step results already exist")
return
codebook = asmk.codebook
kernel = kern_pkg.ASMKKernel(codebook, **asmk.params['build_ivf']['kernel'])
start, end = int(len(images)*partition['norm_start']), int(len(images)*partition['norm_end'])
data_opts = {"imsize": inference['image_size'], "transform": globals['transform']}
infer_opts = {"scales": inference['scales'], "features_num": inference['features_num']}
# Aggregate database
dset = ImagesFromList(root='', images=images[start:end], bbxs=None, **data_opts)
vecs, imids, *_ = how_net.extract_vectors_local(net, dset, globals["device"], **infer_opts)
imids += start
quantized = codebook.quantize(vecs, imids, **asmk.params["build_ivf"]["quantize"])
aggregated = kernel.aggregate(*quantized, **asmk.params["build_ivf"]["aggregate"])
with cache_path.open("wb") as handle:
pickle.dump(dict(zip(["des", "word_ids", "image_ids"], aggregated)), handle)
def asmk_build_ivf(globals, logger, *, asmk, cache_path, database_name, distractors, distractors_path):
"""Asmk evaluation step 'build_ivf'"""
if cache_path.exists():
logger.debug("Step results already exist")
return asmk.build_ivf(None, None, cache_path=cache_path)
builder = asmk.create_ivf_builder(cache_path=cache_path)
# Build ivf
if not builder.loaded_from_cache:
if distractors:
builder.initialize_with_distractors(distractors_path)
logger.debug(f"Loaded ivf with distractors '{distractors}'")
for path in sorted(globals["exp_path"].glob(f"eval/{database_name}.agg*.pkl")):
with path.open("rb") as handle:
des = pickle.load(handle)
builder.ivf.add(des['des'], des['word_ids'], des['image_ids'])
logger.info(f"Indexed '{path.name}'")
asmk_dataset = asmk.add_ivf_builder(builder)
logger.debug(f"IVF stats: {asmk_dataset.metadata['build_ivf']['ivf_stats']}")
return asmk_dataset
def asmk_index_database(net, inference, globals, logger, *, asmk, images, distractors_path=None):
"""Asmk evaluation step 'aggregate_database' and 'build_ivf'"""
data_opts = {"imsize": inference['image_size'], "transform": globals['transform']}
infer_opts = {"scales": inference['scales'], "features_num": inference['features_num']}
# Index database vectors
dset = ImagesFromList(root='', images=images, bbxs=None, **data_opts)
vecs, imids, *_ = how_net.extract_vectors_local(net, dset, globals["device"], **infer_opts)
asmk_dataset = asmk.build_ivf(vecs, imids, distractors_path=distractors_path)
logger.info(f"Indexed images in {asmk_dataset.metadata['build_ivf']['index_time']:.2f}s")
logger.debug(f"IVF stats: {asmk_dataset.metadata['build_ivf']['ivf_stats']}")
return asmk_dataset
def asmk_query_ivf(net, inference, globals, logger, *, dataset, asmk_dataset, qimages, bbxs, gnd,
results, cache_path, imid_offset=0):
"""Asmk evaluation step 'query_ivf'"""
if gnd is None and cache_path and cache_path.exists():
logger.debug("Step results already exist")
return
data_opts = {"imsize": inference['image_size'], "transform": globals['transform']}
infer_opts = {"scales": inference['scales'], "features_num": inference['features_num']}
# Query vectors
qdset = ImagesFromList(root='', images=qimages, bbxs=bbxs, **data_opts)
qvecs, qimids, *_ = how_net.extract_vectors_local(net, qdset, globals["device"], **infer_opts)
qimids += imid_offset
metadata, query_ids, ranks, scores = asmk_dataset.query_ivf(qvecs, qimids)
logger.debug(f"Average query time (quant+aggr+search) is {metadata['query_avg_time']:.3f}s")
# Evaluate
if gnd is not None:
results[dataset] = score_helpers.compute_map_and_log(dataset, ranks.T, gnd, logger=logger)
with cache_path.open("wb") as handle:
pickle.dump({"metadata": metadata, "query_ids": query_ids, "ranks": ranks, "scores": scores}, handle)
#
# Helpers
#
def _convert_checkpoint(state):
"""Enable loading checkpoints in the old format"""
if "_version" not in state:
# Old checkpoint format
meta = state['meta']
state['net_params'] = {
"architecture": meta['architecture'],
"pretrained": True,
"skip_layer": meta['skip_layer'],
"dim_reduction": {"dim": meta["dim"]},
"smoothing": {"kernel_size": meta["feat_pool_k"]},
"runtime": {
"mean_std": [meta['mean'], meta['std']],
"image_size": 1024,
"features_num": 1000,
"scales": [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25],
"training_scales": [1],
},
}
state_dict = state['state_dict']
state_dict['dim_reduction.weight'] = state_dict.pop("whiten.weight")
state_dict['dim_reduction.bias'] = state_dict.pop("whiten.bias")
state['_version'] = "how/2020"
return state
|