File size: 11,321 Bytes
3ef85e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright 2022-present NAVER Corp.
# CC BY-NC-SA 4.0
# Available only for non-commercial use

from pdb import set_trace as bb
from PIL import Image
import numpy as np

from core import functional as myF
from tools.common import todevice
from .transforms import instanciate_transforms
from .utils import *


class FastPairLoader (DatasetWithRng):
    """ On-the-fly generation of related image pairs
    crop:   random crop applied to both images
    scale:  random scaling applied to img2
    distort: random ditorsion applied to img2
    
    self[idx] returns: (img1, img2), dict(homography=)
        (homography: 3x3 array, can be nan)
    """
    def __init__(self, dataset, crop=256, transform='', p_flip=0, p_swap=0, scale_jitter=0, seed=None):
        super().__init__(seed)
        self.dataset = self.with_same_rng(dataset)
        self.transform = instanciate_transforms( transform, rng=self.rng )
        self.crop_size = crop
        self.p_swap = p_swap
        self.p_flip = p_flip
        self.scale_jitter = abs(np.log1p(scale_jitter))

    def __len__(self):
        return len(self.dataset)

    def __repr__(self):
        fmt_str = f'FastPairLoader({self.dataset},\n'
        short_repr = lambda s: repr(s).strip().replace('\n',', ')[14:-1].replace('    ',' ')
        fmt_str += '    Transform:\t%s\n' % short_repr(self.transform)
        fmt_str +=f'    Crop={self.crop_size}, scale_jitter=x{np.exp(self.scale_jitter):g}, p_swap={self.p_swap:g}'
        return fmt_str

    def init_worker(self, tid):
        super().init_worker(tid)
        self.dataset.init_worker(tid)

    def set_epoch(self, epoch):
        self.dataset.set_epoch(epoch)

    def __getitem__(self, idx):
        self.init_worker(idx) # preserve RNG for this pair
        (img1, img2), gt = self.dataset[idx]

        if self.rng.random() < self.p_swap:
            img1, img2 = img2, img1
            if 'homography' in gt: gt['homography'] = invh(gt['homography'])
            if 'corres' in gt: gt['corres'] = swap_corres(gt['corres'])

        if self.rng.random() < self.p_flip:
            img1, img2, gt = flip_image_pair(img1, img2, gt)

        # apply transformations to the second image
        img2 = self.transform(dict(img=img2))

        homography, corres = spatial_relationship( img1, img2, gt )

        # find a good window
        img1, img2 = map(self._pad_rgb_numpy, (img1, img2['img']))

        if not 'debug':
            from tools.viz import show_correspondences
            print(np.median(corres[:,5]))
            show_correspondences(img1, img2, corres, bb=bb)

        def windows_from_corres( idx, scale_jitter=1 ):
            c = corres[idx]
            p1, p2, scale = c[0:2], c[2:4], c[6]
            scale *= scale_jitter

            # make windows based on scaling
            win1 = window(*p1, self.crop_size, max(1, 1/scale), img1.shape)
            win2 = window(*p2, self.crop_size, max(1, scale/1), img2.shape)
            return win1, win2

        best = 0, None
        for idx in self.rng.choice(len(corres), size=min(len(corres),5), replace=False):
            # pick a correspondence at random
            win1, win2 = windows_from_corres( idx )

            # check how many matches are in the 2 windows
            score = score_windows(is_in(corres[:,0:2],win1), is_in(corres[:,2:4],win2))
            if score > best[0]: best = score, idx

        others = {}
        if None in best: # counldn't find a good window
            img1 = img2 = np.zeros((self.crop_size,self.crop_size,3), dtype=np.uint8)
            corres = np.empty((0, 6), dtype=np.float32)
        else:
            # jitter scales
            scale_jitter = np.exp(self.rng.uniform(-self.scale_jitter, self.scale_jitter))
            win1, win2 = windows_from_corres( best[1], scale_jitter )
            # print(win1, win2, img1.shape, img2.shape)
            img1, img2 = imresize(img1[win1], self.crop_size), imresize(img2[win2], self.crop_size)
            trf1, trf2 = wintrf(win1, img1), wintrf(win2, img2)

            # fix rotation if necessary
            angle_scores = np.bincount(corres[:,5].astype(int) % 8)
            rot90 = int((((angle_scores.argmax() + 4) % 8) - 4) / 2)
            if rot90: # rectify rotation
                img2, trf = myF.rotate_img_90((img2, np.eye(3)), 90*rot90)
                trf2 = invh(trf) @ trf2

            homography = trf2 @ homography @ invh(trf1)
            corres = myF.affmul((trf1,trf2), corres)

        f32c = lambda i,**kw: np.require(i, requirements='CWAE', **kw)
        return (f32c(img1), f32c(img2)), dict(homography = f32c(homography, dtype=np.float32), corres=corres, **others)

    def _pad_rgb_numpy(self, img):
        if img.mode != 'RGB': 
            img = img.convert('RGB')
        if min(img.size) < self.crop_size:
            w, h = img.size
            result = Image.new('RGB', (max(w,self.crop_size), max(h,self.crop_size)), 0)
            result.paste(img, (0, 0))
            img = result
        return np.asarray(img)



def swap_corres( corres ):  # swap img1 and img2
    res = corres.copy()
    res[:,[0,1,2,3]] = corres[:,[2,3,0,1]]
    if corres.shape[1] > 4: # invert rotation and scale
        scale, rot = myF.decode_scale_rot(corres[:,5])
        res[:,5] = myF.encode_scale_rot(1/scale, -rot)
    return res

def flip(img):
    w, h = img.size
    return img.transpose(Image.FLIP_LEFT_RIGHT), np.float32( [[-1,0,w-1],[0,1,0],[0,0,1]] )

def flip_image_pair(img1, img2, gt):
    img1, F1 = flip(img1)
    img2, F2 = flip(img2)
    res = {}
    for key, value in gt.items():
        if key == 'homography':
            res['homography'] = F2 @ value @ F1
        elif key == 'aflow':
            assert False, 'flip for aflow: todo'
        elif key == 'corres':
            new_corres = np.c_[applyh(F1,value[:,0:2]), applyh(F2,value[:,2:4])]
            if value.shape[1] == 4: pass
            elif value.shape[1] == 6:
                scale, rot = myF.decode_scale_rot(value[:,5])
                new_code = myF.encode_scale_rot(scale, -rot)
                new_corres = np.c_[new_corres,value[:,4],new_code]
            res['corres'] = new_corres
        else:
            raise ValueError(f"flip_image_pair: bad gt field '{key}'")
    return img1, img2, res


def spatial_relationship( img1, img2, gt ):
    if 'homography' in gt:
        homography = gt['homography']
        if 'homography' in img2: 
            homography = np.float32(img2['homography']) @ homography
        corres = corres_from_homography(homography, *img1.size)

    elif 'corres' in gt:
        homography = np.full((3,3), np.nan, dtype=np.float32)
        corres = gt['corres']
        if 'homography' in img2:
            corres[:,2:4] = applyh(img2['homography'], corres[:,2:4])
        else:
            img2['homography'] = np.eye(3)
        scales = np.sqrt(np.abs(np.linalg.det(jacobianh(img2['homography'], corres[:,0:2]).T)))

        if corres.shape[1] == 4:
            scales, rots = scale_rot_from_corres(corres)
            corres = np.c_[corres, np.ones_like(scales), myF.encode_scale_rot(scales,rots*180/np.pi), scales]
        elif corres.shape[1] == 6:
            corres = np.c_[corres, scales * myF.decode_scale_rot(corres[:,5])[0]]
        else:
            assert ValueError(f'bad shape for corres: {corres.shape}')

    return homography, corres


def scale_rot_from_corres( corres, sub=256, nn=16 ):
    # select a subset of relevant correspondences
    sub = np.random.choice(len(corres), size=min(len(corres),sub), replace=False)
    sub = corres[sub]

    # for each corres, find the scale change w.r.t. its NNs
    from scipy.spatial.distance import cdist
    nns = cdist(corres, sub, metric='sqeuclidean').argsort(axis=1)[:,:nn]

    # affine transform for this set of neighboring correspondences
    pts = sub[nns] # shape = npts x sub x 4
    # [P1,1] @ A = P2  with A = 3x2 matrix
    # A = [P1,1]^-1 @ P2
    P1, P2 = pts[:,:,0:2], pts[:,:,2:4] # each row = list of correspondences
    P1 = np.concatenate((P1,np.ones_like(P1[:,:,:1])),axis=-1)
    A = (np.linalg.pinv(P1) @ P2).transpose(0,2,1)

    scale, (angy,angx) = detect_scale_rotation(A.transpose(1,2,0)[:,1::-1])
    rot = np.arctan2(angy, angx)
    return scale.clip(min=0.2, max=5), rot


def window1(x, size, w):
    l = x - int(0.5 + size / 2)
    r = l + int(0.5 + size)
    if l < 0: l,r = (0, r - l)
    if r > w: l,r = (l + w - r, w)
    if l < 0: l,r = 0,w # larger than width
    return slice(l,r)

def window(cx, cy, win_size, scale, img_shape):
    return (window1(int(cy), win_size*scale, img_shape[0]), 
            window1(int(cx), win_size*scale, img_shape[1]))

def is_in( pts, window ):
    x, y = pts.T
    sly, slx = window
    return (slx.start <= x) & (x < slx.stop) & (sly.start <= y) & (y < sly.stop)

def score_windows( valid1, valid2 ):
    inter = (valid1 & valid2).sum()
    iou1 = inter / (valid1.sum() + 1e-8)
    iou2 = inter / (valid2.sum() + 1e-8)
    return inter * min(iou1, iou2)

def imresize( img, max_size, resample=Image.ANTIALIAS):
    if max(img.shape[:2]) > max_size:
        if img.shape[-1] == 2:
            img = np.stack([np.float32(Image.fromarray(img[...,i]).resize((max_size,max_size), resample=resample)) for i in range(2)], axis=-1)
        else:
            img = np.asarray(Image.fromarray(img).resize((max_size,max_size), resample=resample))
    assert img.shape[0] == img.shape[1] == max_size, bb()
    return img

def wintrf( window, final_img ):
    wy, wx = window
    H, W = final_img.shape[:2]
    T = np.float32((((wx.stop-wx.start)/W, 0, wx.start),
                    (0, (wy.stop-wy.start)/H, wy.start),
                    (0, 0, 1)) )
    return invh(T)


def collate_ordered(batch, _use_shared_memory=True):
    pairs, gt = zip(*batch)
    imgs1, imgs2 = zip(*pairs)
    assert len(imgs1) == len(imgs2) == len(gt) and isinstance(gt[0], dict)
    
    # reorder samples (supervised ones first, unsupervised ones last)
    supervised = [i for i,b in enumerate(gt) if np.isfinite(b['homography']).all()]
    unsupervsd = [i for i,b in enumerate(gt) if np.isnan(b['homography']).any()]
    order = supervised + unsupervsd

    def collate( tensors, key=None ):
        import torch
        batch = todevice([tensors[i] for i in order], 'cpu')
        if key == 'corres': return batch # cannot concat
        if _use_shared_memory: # shared memory tensor to avoid an extra copy
            numel = sum([x.numel() for x in batch])
            storage = batch[0].storage()._new_shared(numel)
            out = batch[0].new(storage)
        return torch.stack(batch, dim=0, out=out)

    return (collate(imgs1), collate(imgs2)), {k:collate([b[k] for b in gt],k) for k in gt[0]}


if __name__ == '__main__':
    from datasets import *
    from tools.viz import show_random_pairs

    db = BalancedCatImagePairs(
                3125, SyntheticImagePairs(RandomWebImages(0,52),distort='RandomTilting(0.5)'),
                4875, SyntheticImagePairs(SfM120k_Images(),distort='RandomTilting(0.5)'),
                8000, SfM120k_Pairs())

    db = FastPairLoader(db, 
            crop=256, transform='RandomRotation(20), RandomScale(256,1536,ar=1.3,can_upscale=True), PixelNoise()',
            p_swap=0.5, p_flip=0.5, scale_jitter=0, seed=777)

    show_random_pairs(db)