File size: 11,321 Bytes
3ef85e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# Copyright 2022-present NAVER Corp.
# CC BY-NC-SA 4.0
# Available only for non-commercial use
from pdb import set_trace as bb
from PIL import Image
import numpy as np
from core import functional as myF
from tools.common import todevice
from .transforms import instanciate_transforms
from .utils import *
class FastPairLoader (DatasetWithRng):
""" On-the-fly generation of related image pairs
crop: random crop applied to both images
scale: random scaling applied to img2
distort: random ditorsion applied to img2
self[idx] returns: (img1, img2), dict(homography=)
(homography: 3x3 array, can be nan)
"""
def __init__(self, dataset, crop=256, transform='', p_flip=0, p_swap=0, scale_jitter=0, seed=None):
super().__init__(seed)
self.dataset = self.with_same_rng(dataset)
self.transform = instanciate_transforms( transform, rng=self.rng )
self.crop_size = crop
self.p_swap = p_swap
self.p_flip = p_flip
self.scale_jitter = abs(np.log1p(scale_jitter))
def __len__(self):
return len(self.dataset)
def __repr__(self):
fmt_str = f'FastPairLoader({self.dataset},\n'
short_repr = lambda s: repr(s).strip().replace('\n',', ')[14:-1].replace(' ',' ')
fmt_str += ' Transform:\t%s\n' % short_repr(self.transform)
fmt_str +=f' Crop={self.crop_size}, scale_jitter=x{np.exp(self.scale_jitter):g}, p_swap={self.p_swap:g}'
return fmt_str
def init_worker(self, tid):
super().init_worker(tid)
self.dataset.init_worker(tid)
def set_epoch(self, epoch):
self.dataset.set_epoch(epoch)
def __getitem__(self, idx):
self.init_worker(idx) # preserve RNG for this pair
(img1, img2), gt = self.dataset[idx]
if self.rng.random() < self.p_swap:
img1, img2 = img2, img1
if 'homography' in gt: gt['homography'] = invh(gt['homography'])
if 'corres' in gt: gt['corres'] = swap_corres(gt['corres'])
if self.rng.random() < self.p_flip:
img1, img2, gt = flip_image_pair(img1, img2, gt)
# apply transformations to the second image
img2 = self.transform(dict(img=img2))
homography, corres = spatial_relationship( img1, img2, gt )
# find a good window
img1, img2 = map(self._pad_rgb_numpy, (img1, img2['img']))
if not 'debug':
from tools.viz import show_correspondences
print(np.median(corres[:,5]))
show_correspondences(img1, img2, corres, bb=bb)
def windows_from_corres( idx, scale_jitter=1 ):
c = corres[idx]
p1, p2, scale = c[0:2], c[2:4], c[6]
scale *= scale_jitter
# make windows based on scaling
win1 = window(*p1, self.crop_size, max(1, 1/scale), img1.shape)
win2 = window(*p2, self.crop_size, max(1, scale/1), img2.shape)
return win1, win2
best = 0, None
for idx in self.rng.choice(len(corres), size=min(len(corres),5), replace=False):
# pick a correspondence at random
win1, win2 = windows_from_corres( idx )
# check how many matches are in the 2 windows
score = score_windows(is_in(corres[:,0:2],win1), is_in(corres[:,2:4],win2))
if score > best[0]: best = score, idx
others = {}
if None in best: # counldn't find a good window
img1 = img2 = np.zeros((self.crop_size,self.crop_size,3), dtype=np.uint8)
corres = np.empty((0, 6), dtype=np.float32)
else:
# jitter scales
scale_jitter = np.exp(self.rng.uniform(-self.scale_jitter, self.scale_jitter))
win1, win2 = windows_from_corres( best[1], scale_jitter )
# print(win1, win2, img1.shape, img2.shape)
img1, img2 = imresize(img1[win1], self.crop_size), imresize(img2[win2], self.crop_size)
trf1, trf2 = wintrf(win1, img1), wintrf(win2, img2)
# fix rotation if necessary
angle_scores = np.bincount(corres[:,5].astype(int) % 8)
rot90 = int((((angle_scores.argmax() + 4) % 8) - 4) / 2)
if rot90: # rectify rotation
img2, trf = myF.rotate_img_90((img2, np.eye(3)), 90*rot90)
trf2 = invh(trf) @ trf2
homography = trf2 @ homography @ invh(trf1)
corres = myF.affmul((trf1,trf2), corres)
f32c = lambda i,**kw: np.require(i, requirements='CWAE', **kw)
return (f32c(img1), f32c(img2)), dict(homography = f32c(homography, dtype=np.float32), corres=corres, **others)
def _pad_rgb_numpy(self, img):
if img.mode != 'RGB':
img = img.convert('RGB')
if min(img.size) < self.crop_size:
w, h = img.size
result = Image.new('RGB', (max(w,self.crop_size), max(h,self.crop_size)), 0)
result.paste(img, (0, 0))
img = result
return np.asarray(img)
def swap_corres( corres ): # swap img1 and img2
res = corres.copy()
res[:,[0,1,2,3]] = corres[:,[2,3,0,1]]
if corres.shape[1] > 4: # invert rotation and scale
scale, rot = myF.decode_scale_rot(corres[:,5])
res[:,5] = myF.encode_scale_rot(1/scale, -rot)
return res
def flip(img):
w, h = img.size
return img.transpose(Image.FLIP_LEFT_RIGHT), np.float32( [[-1,0,w-1],[0,1,0],[0,0,1]] )
def flip_image_pair(img1, img2, gt):
img1, F1 = flip(img1)
img2, F2 = flip(img2)
res = {}
for key, value in gt.items():
if key == 'homography':
res['homography'] = F2 @ value @ F1
elif key == 'aflow':
assert False, 'flip for aflow: todo'
elif key == 'corres':
new_corres = np.c_[applyh(F1,value[:,0:2]), applyh(F2,value[:,2:4])]
if value.shape[1] == 4: pass
elif value.shape[1] == 6:
scale, rot = myF.decode_scale_rot(value[:,5])
new_code = myF.encode_scale_rot(scale, -rot)
new_corres = np.c_[new_corres,value[:,4],new_code]
res['corres'] = new_corres
else:
raise ValueError(f"flip_image_pair: bad gt field '{key}'")
return img1, img2, res
def spatial_relationship( img1, img2, gt ):
if 'homography' in gt:
homography = gt['homography']
if 'homography' in img2:
homography = np.float32(img2['homography']) @ homography
corres = corres_from_homography(homography, *img1.size)
elif 'corres' in gt:
homography = np.full((3,3), np.nan, dtype=np.float32)
corres = gt['corres']
if 'homography' in img2:
corres[:,2:4] = applyh(img2['homography'], corres[:,2:4])
else:
img2['homography'] = np.eye(3)
scales = np.sqrt(np.abs(np.linalg.det(jacobianh(img2['homography'], corres[:,0:2]).T)))
if corres.shape[1] == 4:
scales, rots = scale_rot_from_corres(corres)
corres = np.c_[corres, np.ones_like(scales), myF.encode_scale_rot(scales,rots*180/np.pi), scales]
elif corres.shape[1] == 6:
corres = np.c_[corres, scales * myF.decode_scale_rot(corres[:,5])[0]]
else:
assert ValueError(f'bad shape for corres: {corres.shape}')
return homography, corres
def scale_rot_from_corres( corres, sub=256, nn=16 ):
# select a subset of relevant correspondences
sub = np.random.choice(len(corres), size=min(len(corres),sub), replace=False)
sub = corres[sub]
# for each corres, find the scale change w.r.t. its NNs
from scipy.spatial.distance import cdist
nns = cdist(corres, sub, metric='sqeuclidean').argsort(axis=1)[:,:nn]
# affine transform for this set of neighboring correspondences
pts = sub[nns] # shape = npts x sub x 4
# [P1,1] @ A = P2 with A = 3x2 matrix
# A = [P1,1]^-1 @ P2
P1, P2 = pts[:,:,0:2], pts[:,:,2:4] # each row = list of correspondences
P1 = np.concatenate((P1,np.ones_like(P1[:,:,:1])),axis=-1)
A = (np.linalg.pinv(P1) @ P2).transpose(0,2,1)
scale, (angy,angx) = detect_scale_rotation(A.transpose(1,2,0)[:,1::-1])
rot = np.arctan2(angy, angx)
return scale.clip(min=0.2, max=5), rot
def window1(x, size, w):
l = x - int(0.5 + size / 2)
r = l + int(0.5 + size)
if l < 0: l,r = (0, r - l)
if r > w: l,r = (l + w - r, w)
if l < 0: l,r = 0,w # larger than width
return slice(l,r)
def window(cx, cy, win_size, scale, img_shape):
return (window1(int(cy), win_size*scale, img_shape[0]),
window1(int(cx), win_size*scale, img_shape[1]))
def is_in( pts, window ):
x, y = pts.T
sly, slx = window
return (slx.start <= x) & (x < slx.stop) & (sly.start <= y) & (y < sly.stop)
def score_windows( valid1, valid2 ):
inter = (valid1 & valid2).sum()
iou1 = inter / (valid1.sum() + 1e-8)
iou2 = inter / (valid2.sum() + 1e-8)
return inter * min(iou1, iou2)
def imresize( img, max_size, resample=Image.ANTIALIAS):
if max(img.shape[:2]) > max_size:
if img.shape[-1] == 2:
img = np.stack([np.float32(Image.fromarray(img[...,i]).resize((max_size,max_size), resample=resample)) for i in range(2)], axis=-1)
else:
img = np.asarray(Image.fromarray(img).resize((max_size,max_size), resample=resample))
assert img.shape[0] == img.shape[1] == max_size, bb()
return img
def wintrf( window, final_img ):
wy, wx = window
H, W = final_img.shape[:2]
T = np.float32((((wx.stop-wx.start)/W, 0, wx.start),
(0, (wy.stop-wy.start)/H, wy.start),
(0, 0, 1)) )
return invh(T)
def collate_ordered(batch, _use_shared_memory=True):
pairs, gt = zip(*batch)
imgs1, imgs2 = zip(*pairs)
assert len(imgs1) == len(imgs2) == len(gt) and isinstance(gt[0], dict)
# reorder samples (supervised ones first, unsupervised ones last)
supervised = [i for i,b in enumerate(gt) if np.isfinite(b['homography']).all()]
unsupervsd = [i for i,b in enumerate(gt) if np.isnan(b['homography']).any()]
order = supervised + unsupervsd
def collate( tensors, key=None ):
import torch
batch = todevice([tensors[i] for i in order], 'cpu')
if key == 'corres': return batch # cannot concat
if _use_shared_memory: # shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, dim=0, out=out)
return (collate(imgs1), collate(imgs2)), {k:collate([b[k] for b in gt],k) for k in gt[0]}
if __name__ == '__main__':
from datasets import *
from tools.viz import show_random_pairs
db = BalancedCatImagePairs(
3125, SyntheticImagePairs(RandomWebImages(0,52),distort='RandomTilting(0.5)'),
4875, SyntheticImagePairs(SfM120k_Images(),distort='RandomTilting(0.5)'),
8000, SfM120k_Pairs())
db = FastPairLoader(db,
crop=256, transform='RandomRotation(20), RandomScale(256,1536,ar=1.3,can_upscale=True), PixelNoise()',
p_swap=0.5, p_flip=0.5, scale_jitter=0, seed=777)
show_random_pairs(db)
|