File size: 75,192 Bytes
4f4656c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
from __future__ import annotations
from diffusers import StableDiffusionPipeline
import torch
from dataclasses import dataclass
from typing import Callable, List, Optional, Union, Any, Dict
import numpy as np
from diffusers.utils import deprecate, logging, BaseOutput
from einops import rearrange, repeat
from torch.nn.functional import grid_sample
from torch.nn import functional as nnf
import torchvision.transforms as T
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel, attention_processor
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import PIL
from PIL import Image
from kornia.morphology import dilation
from collections import OrderedDict
from packaging import version
import inspect
from diffusers.utils import (
    deprecate,
    is_accelerate_available,
    is_accelerate_version,
    logging,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
import torch.nn as nn

T = torch.Tensor


@dataclass(frozen=True)
class StyleAlignedArgs:
    share_group_norm: bool = True
    share_layer_norm: bool = True,
    share_attention: bool = True
    adain_queries: bool = True
    adain_keys: bool = True
    adain_values: bool = False
    full_attention_share: bool = False
    keys_scale: float = 1.
    only_self_level: float = 0.

def expand_first(feat: T, scale=1., ) -> T:
    b = feat.shape[0]
    feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
    if scale == 1:
        feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
    else:
        feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
        feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
    return feat_style.reshape(*feat.shape)


def concat_first(feat: T, dim=2, scale=1.) -> T:
    feat_style = expand_first(feat, scale=scale)
    return torch.cat((feat, feat_style), dim=dim)


def calc_mean_std(feat, eps: float = 1e-5) -> tuple[T, T]:
    feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
    feat_mean = feat.mean(dim=-2, keepdims=True)
    return feat_mean, feat_std


def adain(feat: T) -> T:
    feat_mean, feat_std = calc_mean_std(feat)
    feat_style_mean = expand_first(feat_mean)
    feat_style_std = expand_first(feat_std)
    feat = (feat - feat_mean) / feat_std
    feat = feat * feat_style_std + feat_style_mean
    return feat


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> image = pipe(prompt).images[0]
        ```
"""

# ACTIVATE_STEP_CANDIDATE = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1]


def create_image_grid(image_list, rows, cols, padding=10):
    # Ensure the number of rows and columns doesn't exceed the number of images
    rows = min(rows, len(image_list))
    cols = min(cols, len(image_list))

    # Get the dimensions of a single image
    image_width, image_height = image_list[0].size

    # Calculate the size of the output image
    grid_width = cols * (image_width + padding) - padding
    grid_height = rows * (image_height + padding) - padding

    # Create an empty grid image
    grid_image = Image.new('RGB', (grid_width, grid_height), (255, 255, 255))

    # Paste images into the grid
    for i, img in enumerate(image_list[:rows * cols]):
        row = i // cols
        col = i % cols
        x = col * (image_width + padding)
        y = row * (image_height + padding)
        grid_image.paste(img, (x, y))

    return grid_image




class CrossFrameAttnProcessor_backup:
    def __init__(self, unet_chunk_size=2):
        self.unet_chunk_size = unet_chunk_size

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None):
        

        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        # elif attn.cross_attention_norm:
        #     encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        # Sparse Attention
        if not is_cross_attention:
            video_length = key.size()[0] // self.unet_chunk_size
            # former_frame_index = torch.arange(video_length) - 1
            # former_frame_index[0] = 0
            # import pdb; pdb.set_trace()

            # if video_length > 3:
            #     import pdb; pdb.set_trace()
            former_frame_index = [0] * video_length
            key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
            key = key[:, former_frame_index]
            key = rearrange(key, "b f d c -> (b f) d c")
            value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
            value = value[:, former_frame_index]
            value = rearrange(value, "b f d c -> (b f) d c")


        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states
    

class SharedAttentionProcessor:
    def __init__(self, 
                 adain_keys=True, 
                 adain_queries=True, 
                 adain_values=False, 
                 keys_scale=1.,
                 attn_map_save_steps=[]):
        super().__init__()
        self.adain_queries = adain_queries
        self.adain_keys = adain_keys
        self.adain_values = adain_values
        # self.full_attention_share = style_aligned_args.full_attention_share
        self.keys_scale = keys_scale
        self.attn_map_save_steps = attn_map_save_steps


    def __call__(
            self,
            attn: attention_processor.Attention,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            **kwargs
    ):
        
        if not hasattr(attn, "attn_map"):
            setattr(attn, "attn_map", {})
            setattr(attn, "inference_step", 0)
        else:
            attn.inference_step += 1

        residual = hidden_states
        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        is_cross_attention = encoder_hidden_states is not None

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        # elif attn.cross_attention_norm:
        #     encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        # if self.step >= self.start_inject:

        
        if not is_cross_attention:# and self.share_attention:
            if self.adain_queries:
                query = adain(query)
            if self.adain_keys:
                key = adain(key)
            if self.adain_values:
                value = adain(value)
            key = concat_first(key, -2, scale=self.keys_scale)
            value = concat_first(value, -2)
            hidden_states = nnf.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )
        else:
            hidden_states = nnf.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )



        
        # hidden_states = adain(hidden_states)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor
        return hidden_states


class SharedAttentionProcessor_v2:
    def __init__(self, 
                 adain_keys=True, 
                 adain_queries=True, 
                 adain_values=False, 
                 keys_scale=1.,
                 attn_map_save_steps=[]):
        super().__init__()
        self.adain_queries = adain_queries
        self.adain_keys = adain_keys
        self.adain_values = adain_values
        # self.full_attention_share = style_aligned_args.full_attention_share
        self.keys_scale = keys_scale
        self.attn_map_save_steps = attn_map_save_steps


    def __call__(
            self,
            attn: attention_processor.Attention,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            **kwargs
    ):
        
        if not hasattr(attn, "attn_map"):
            setattr(attn, "attn_map", {})
            setattr(attn, "inference_step", 0)
        else:
            attn.inference_step += 1

        residual = hidden_states
        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        is_cross_attention = encoder_hidden_states is not None

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)


        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        # elif attn.cross_attention_norm:
        #     encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        tmp_query_shape = query.shape
        tmp_key_shape = key.shape
        tmp_value_shape = value.shape


        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        # if self.step >= self.start_inject:

        
        if not is_cross_attention:# and self.share_attention:
            if self.adain_queries:
                query = adain(query)
            if self.adain_keys:
                key = adain(key)
            if self.adain_values:
                value = adain(value)
            key = concat_first(key, -2, scale=self.keys_scale)
            value = concat_first(value, -2)
            # hidden_states = nnf.scaled_dot_product_attention(
            #     query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            # )

            if attn.inference_step in self.attn_map_save_steps:

                query = query.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
                key  = key.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
                value = value.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)

                query = attn.head_to_batch_dim(query)
                key = attn.head_to_batch_dim(key)
                value = attn.head_to_batch_dim(value)

                attention_probs = attn.get_attention_scores(query, key, attention_mask)

                if attn.inference_step in self.attn_map_save_steps:
                    attn.attn_map[attn.inference_step] = attention_probs.clone().cpu().detach()

                hidden_states = torch.bmm(attention_probs, value)
                hidden_states = attn.batch_to_head_dim(hidden_states)
            else:
                hidden_states = nnf.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
                )
                    # hidden_states = adain(hidden_states)
                hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
                hidden_states = hidden_states.to(query.dtype)

        else:

            hidden_states = nnf.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )
            # hidden_states = adain(hidden_states)
            hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        if attn.inference_step == 49:
            #initialize inference step
            attn.inference_step = -1

        return hidden_states


def swapping_attention(key, value, chunk_size=2):
    chunk_length = key.size()[0] // chunk_size  # [text-condition, null-condition]
    reference_image_index = [0] * chunk_length  # [0 0 0 0 0]
    key = rearrange(key, "(b f) d c -> b f d c", f=chunk_length)
    key = key[:, reference_image_index]  # ref to all
    key = rearrange(key, "b f d c -> (b f) d c")
    value = rearrange(value, "(b f) d c -> b f d c", f=chunk_length)
    value = value[:, reference_image_index]  # ref to all
    value = rearrange(value, "b f d c -> (b f) d c")

    return key, value
    
class CrossFrameAttnProcessor:
    def __init__(self, unet_chunk_size=2, attn_map_save_steps=[],activate_step_indices=None):
        self.unet_chunk_size = unet_chunk_size
        self.attn_map_save_steps = attn_map_save_steps
        self.activate_step_indices = activate_step_indices

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None):
        
        if not hasattr(attn, "attn_map"):
            setattr(attn, "attn_map", {})
            setattr(attn, "inference_step", 0)
        else:
            attn.inference_step += 1
        
        

        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        is_in_inference_step = False

        if self.activate_step_indices is not None:
            for activate_step_index in self.activate_step_indices:
                if attn.inference_step >= activate_step_index[0] and attn.inference_step <= activate_step_index[1]:
                    is_in_inference_step = True
                    break

        # Swapping Attention
        if not is_cross_attention and is_in_inference_step:
            key, value = swapping_attention(key, value, self.unet_chunk_size)




        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)

        if attn.inference_step in self.attn_map_save_steps:
            attn.attn_map[attn.inference_step] = attention_probs.clone().cpu().detach()

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if attn.inference_step == 49:
            attn.inference_step = -1

        return hidden_states




class CrossFrameAttnProcessor4Inversion:
    def __init__(self, unet_chunk_size=2, attn_map_save_steps=[],activate_step_indices=None):
        self.unet_chunk_size = unet_chunk_size
        self.attn_map_save_steps = attn_map_save_steps
        self.activate_step_indices = activate_step_indices

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None):
        
        if not hasattr(attn, "attn_map"):
            setattr(attn, "attn_map", {})
            setattr(attn, "inference_step", 0)
        else:
            attn.inference_step += 1
        
        

        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        # elif attn.cross_attention_norm:
        #     encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        is_in_inference_step = False

        if self.activate_step_indices is not None:
            for activate_step_index in self.activate_step_indices:
                if attn.inference_step >= activate_step_index[0] and attn.inference_step <= activate_step_index[1]:
                    is_in_inference_step = True
                    break

        # Swapping Attention
        if not is_cross_attention and is_in_inference_step:
            key, value = swapping_attention(key, value, self.unet_chunk_size)



        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        
        # if attn.inference_step > 45 and attn.inference_step < 50:
        # if attn.inference_step == 42 or attn.inference_step==49:
        if attn.inference_step in self.attn_map_save_steps:
            attn.attn_map[attn.inference_step] = attention_probs.clone().cpu().detach()

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if attn.inference_step == 49:
            #initialize inference step
            attn.inference_step = -1

        return hidden_states



class CrossFrameAttnProcessor_store:
    def __init__(self, unet_chunk_size=2, attn_map_save_steps=[]):
        self.unet_chunk_size = unet_chunk_size
        self.attn_map_save_steps = attn_map_save_steps

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None):
        
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        # elif attn.cross_attention_norm:
        #     encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        # Swapping Attention
        if not is_cross_attention:
            key, value = swapping_attention(key, value, self.unet_chunk_size)


        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)

        if not hasattr(attn, "attn_map"):
            setattr(attn, "attn_map", {})
            setattr(attn, "inference_step", 0)
        else:
            attn.inference_step += 1
        
        
        # if attn.inference_step > 45 and attn.inference_step < 50:
        # if attn.inference_step == 42 or attn.inference_step==49:
        if attn.inference_step in self.attn_map_save_steps:
            attn.attn_map[attn.inference_step] = attention_probs.clone().cpu().detach()

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states

    
class InvertedVEAttnProcessor:
    def __init__(self, unet_chunk_size=2, scale=1.0):
        self.unet_chunk_size = unet_chunk_size
        self.scale = scale

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.cross_attention_norm:
            encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        #Dual Attention
        if not is_cross_attention:
            ve_key = key.clone()
            ve_value = value.clone()
            video_length = ve_key.size()[0] // self.unet_chunk_size

            former_frame_index = [0] * video_length
            ve_key = rearrange(ve_key, "(b f) d c -> b f d c", f=video_length)
            ve_key = ve_key[:, former_frame_index]
            ve_key = rearrange(ve_key, "b f d c -> (b f) d c")
            ve_value = rearrange(ve_value, "(b f) d c -> b f d c", f=video_length)
            ve_value = ve_value[:, former_frame_index]
            ve_value = rearrange(ve_value, "b f d c -> (b f) d c")

            ve_key = attn.head_to_batch_dim(ve_key)
            ve_value = attn.head_to_batch_dim(ve_value)
            ve_query = attn.head_to_batch_dim(query)

            ve_attention_probs = attn.get_attention_scores(ve_query, ve_key, attention_mask)
            ve_hidden_states = torch.bmm(ve_attention_probs, ve_value)
            ve_hidden_states = attn.batch_to_head_dim(ve_hidden_states)
            ve_hidden_states[0,...] = 0
            ve_hidden_states[video_length,...] = 0

            query = attn.head_to_batch_dim(query)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)

            attention_probs = attn.get_attention_scores(query, key, attention_mask)
            hidden_states = torch.bmm(attention_probs, value)
            hidden_states = attn.batch_to_head_dim(hidden_states)

            hidden_states = hidden_states + ve_hidden_states * self.scale

        else:
            query = attn.head_to_batch_dim(query)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)

            attention_probs = attn.get_attention_scores(query, key, attention_mask)
            hidden_states = torch.bmm(attention_probs, value)
            hidden_states = attn.batch_to_head_dim(hidden_states)

        

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states

class AttnProcessor(nn.Module):
    r"""
    Default processor for performing attention-related computations.
    """
    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):

        residual = hidden_states
        # import pdb; pdb.set_trace()
        # if attn.spatial_norm is not None:
        #     hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        # if attn.group_norm is not None:
        #     hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states
    

@dataclass
class StableDiffusionPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
        nsfw_content_detected (`List[bool]`)
            List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, or `None` if safety checking could not be performed.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]
    nsfw_content_detected: Optional[List[bool]]

class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)


class InvertedVEPipeline(StableDiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = True,
    ):
        # super().__init__()
        super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
                         safety_checker, feature_extractor, requires_safety_checker)

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding.

        When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
        steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding.

        When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
        several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        Note that offloading happens on a submodule basis. Memory savings are higher than with
        `enable_model_cpu_offload`, but performance is lower.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
            cpu_offload(cpu_offloaded_model, device)

        if self.safety_checker is not None:
            cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        hook = None
        for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        if self.safety_checker is not None:
            _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device


    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        else:
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        target_prompt: Optional[str] = None,
        # device: Optional[Union[str, torch.device]] = "cpu",
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        # import pdb; pdb.set_trace()

        
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # import pdb; pdb.set_trace()

        if target_prompt is not None:
            target_prompt_embeds = self._encode_prompt(
                target_prompt,
                device,
                num_images_per_prompt,
                do_classifier_free_guidance,
                negative_prompt,
                prompt_embeds=None,
                negative_prompt_embeds=negative_prompt_embeds,
            )
            prompt_embeds[num_images_per_prompt+1: ] = target_prompt_embeds[num_images_per_prompt+1:]
        import pdb; pdb.set_trace()

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if output_type == "latent":
            image = latents
            has_nsfw_concept = None
        elif output_type == "pil":
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)


ACTIVATE_LAYER_CANDIDATE= [
        'down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', 
        'down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor', 
        'down_blocks.1.attentions.0.transformer_blocks.1.attn1.processor', 
        'down_blocks.1.attentions.0.transformer_blocks.1.attn2.processor',
        'down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor', 
        'down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor', 
        'down_blocks.1.attentions.1.transformer_blocks.1.attn1.processor', 
        'down_blocks.1.attentions.1.transformer_blocks.1.attn2.processor', #8

        'down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor',
        'down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.1.attn1.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.1.attn2.processor',
        'down_blocks.2.attentions.0.transformer_blocks.2.attn1.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.2.attn2.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.3.attn1.processor',
        'down_blocks.2.attentions.0.transformer_blocks.3.attn2.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.4.attn1.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.4.attn2.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.5.attn1.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.5.attn2.processor',
        'down_blocks.2.attentions.0.transformer_blocks.6.attn1.processor',
        'down_blocks.2.attentions.0.transformer_blocks.6.attn2.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.7.attn1.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.7.attn2.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.8.attn1.processor', 
        'down_blocks.2.attentions.0.transformer_blocks.8.attn2.processor',
        'down_blocks.2.attentions.0.transformer_blocks.9.attn1.processor',
        'down_blocks.2.attentions.0.transformer_blocks.9.attn2.processor', #20

        'down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor',
        'down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.1.attn1.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.1.attn2.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.2.attn1.processor',
        'down_blocks.2.attentions.1.transformer_blocks.2.attn2.processor',
        'down_blocks.2.attentions.1.transformer_blocks.3.attn1.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.3.attn2.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.4.attn1.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.4.attn2.processor',
        'down_blocks.2.attentions.1.transformer_blocks.5.attn1.processor',
        'down_blocks.2.attentions.1.transformer_blocks.5.attn2.processor',
        'down_blocks.2.attentions.1.transformer_blocks.6.attn1.processor',
        'down_blocks.2.attentions.1.transformer_blocks.6.attn2.processor',
        'down_blocks.2.attentions.1.transformer_blocks.7.attn1.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.7.attn2.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.8.attn1.processor', 
        'down_blocks.2.attentions.1.transformer_blocks.8.attn2.processor',
        'down_blocks.2.attentions.1.transformer_blocks.9.attn1.processor',
        'down_blocks.2.attentions.1.transformer_blocks.9.attn2.processor',#20

        'mid_block.attentions.0.transformer_blocks.0.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.0.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.1.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.1.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.2.attn1.processor',
        'mid_block.attentions.0.transformer_blocks.2.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.3.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.3.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.4.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.4.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.5.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.5.attn2.processor',
        'mid_block.attentions.0.transformer_blocks.6.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.6.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.7.attn1.processor',
        'mid_block.attentions.0.transformer_blocks.7.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.8.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.8.attn2.processor', 
        'mid_block.attentions.0.transformer_blocks.9.attn1.processor', 
        'mid_block.attentions.0.transformer_blocks.9.attn2.processor', #20

        'up_blocks.0.attentions.0.transformer_blocks.0.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.0.attn2.processor',
        'up_blocks.0.attentions.0.transformer_blocks.1.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.1.attn2.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.2.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.2.attn2.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.3.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.3.attn2.processor',
        'up_blocks.0.attentions.0.transformer_blocks.4.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.4.attn2.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.5.attn1.processor',
        'up_blocks.0.attentions.0.transformer_blocks.5.attn2.processor',
        'up_blocks.0.attentions.0.transformer_blocks.6.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.6.attn2.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.7.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.7.attn2.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.8.attn1.processor',
        'up_blocks.0.attentions.0.transformer_blocks.8.attn2.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.9.attn1.processor', 
        'up_blocks.0.attentions.0.transformer_blocks.9.attn2.processor',#20

        'up_blocks.0.attentions.1.transformer_blocks.0.attn1.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.0.attn2.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.1.attn1.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.1.attn2.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.2.attn1.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.2.attn2.processor',
        'up_blocks.0.attentions.1.transformer_blocks.3.attn1.processor',
        'up_blocks.0.attentions.1.transformer_blocks.3.attn2.processor',
        'up_blocks.0.attentions.1.transformer_blocks.4.attn1.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.4.attn2.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.5.attn1.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.5.attn2.processor',
        'up_blocks.0.attentions.1.transformer_blocks.6.attn1.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.6.attn2.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.7.attn1.processor', 
        'up_blocks.0.attentions.1.transformer_blocks.7.attn2.processor',
        'up_blocks.0.attentions.1.transformer_blocks.8.attn1.processor',
        'up_blocks.0.attentions.1.transformer_blocks.8.attn2.processor',
        'up_blocks.0.attentions.1.transformer_blocks.9.attn1.processor',
        'up_blocks.0.attentions.1.transformer_blocks.9.attn2.processor',#20

        'up_blocks.0.attentions.2.transformer_blocks.0.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.0.attn2.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.1.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.1.attn2.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.2.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.2.attn2.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.3.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.3.attn2.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.4.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.4.attn2.processor',
        'up_blocks.0.attentions.2.transformer_blocks.5.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.5.attn2.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.6.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.6.attn2.processor',
        'up_blocks.0.attentions.2.transformer_blocks.7.attn1.processor',
        'up_blocks.0.attentions.2.transformer_blocks.7.attn2.processor',
        'up_blocks.0.attentions.2.transformer_blocks.8.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.8.attn2.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.9.attn1.processor', 
        'up_blocks.0.attentions.2.transformer_blocks.9.attn2.processor', #20

        'up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', 
        'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor',
        'up_blocks.1.attentions.0.transformer_blocks.1.attn1.processor',
        'up_blocks.1.attentions.0.transformer_blocks.1.attn2.processor',
        'up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor', 
        'up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor', 
        'up_blocks.1.attentions.1.transformer_blocks.1.attn1.processor', 
        'up_blocks.1.attentions.1.transformer_blocks.1.attn2.processor',
        'up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor',
        'up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor', 
        'up_blocks.1.attentions.2.transformer_blocks.1.attn1.processor', 
        'up_blocks.1.attentions.2.transformer_blocks.1.attn2.processor',#12

]

STYLE_DESCRIPTION_DICT = {
    "chinese-ink-paint":("{object} in colorful chinese ink paintings style",""),
    "cloud":("Photography of {object}, realistic",""),
    "digital-art":("{object} in digital glitch arts style",""),
    "fire":("{object} photography, realistic, black background'",""),
    "klimt":("{object} in style of Gustav Klimt",""),
    "line-art":("line art drawing of {object} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",""),
    "low-poly":("low-poly style of {object} . low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
                            "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"),
    "munch":("{object} in Edvard Munch style",""),
    "van-gogh":("{object}, Van Gogh",""),
    "totoro":("{object}, art by studio ghibli, cinematic, masterpiece,key visual, studio anime, highly detailed",
              "photo, deformed, black and white, realism, disfigured, low contrast"),
    
    "realistic":            ("A portrait of {object}, photorealistic, 35mm film, realistic",
                             "gray, ugly, deformed, noisy, blurry"),
                             
    "line_art":             ("line art drawing of {object} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",
                            "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic"
                            ) ,

    "anime":                ("anime artwork of {object} . anime style, key visual, vibrant, studio anime, highly detailed",
                            "photo, deformed, black and white, realism, disfigured, low contrast"
                            ),
    
    "Artstyle_Pop_Art" :    ("pop Art style of {object} . bright colors, bold outlines, popular culture themes, ironic or kitsch",
                            "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, minimalist"
                            ),
    
    "Artstyle_Pointillism": ("pointillism style of {object} . composed entirely of small, distinct dots of color, vibrant, highly detailed",
                              "line drawing, smooth shading, large color fields, simplistic"
                              ),
    
    "origami":              ("origami style of {object} . paper art, pleated paper, folded, origami art, pleats, cut and fold, centered composition",
                             "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"
                             ),
    
    "craft_clay":           ("play-doh style of {object} . sculpture, clay art, centered composition, Claymation",
                            "sloppy, messy, grainy, highly detailed, ultra textured, photo"
                            ),
    
    "low_poly" :            ("low-poly style of {object} . low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
                            "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"
                            ),      
    
    "Artstyle_watercolor":  ("watercolor painting of {object} . vibrant, beautiful, painterly, detailed, textural, artistic",
                            "anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy"
                            ),
    
    "Papercraft_Collage" : ("collage style of {object} . mixed media, layered, textural, detailed, artistic",
                            "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic"
                            ),
    
    "Artstyle_Impressionist" : ("impressionist painting of {object} . loose brushwork, vibrant color, light and shadow play, captures feeling over form",
                                "anime, photorealistic, 35mm film, deformed, glitch, low contrast, noisy"
                            ),
    "realistic_bg_black":("{object} photography, realistic, black background",
                          ""),
    "photography_realistic":("Photography of {object}, realistic",
                             ""),
    "digital_art":("{object} in digital glitch arts style.",
                    ""
                    ),
    "chinese_painting":("{object} in traditional a chinese ink painting style.",
                        ""
                        ),
    "no_style":("{object}",
    ""),
    "kid_drawing":("{object} in kid crayon drawings style.",""),
    "onepiece":("{object}, wanostyle, angry looking, straw hat, looking at viewer, solo, upper body, masterpiece, best quality, (extremely detailed), watercolor, illustration, depth of field, sketch, dark intense shadows, sharp focus, soft lighting, hdr, colorful, good composition, fire all around, spectacular, closed shirt",
                " watermark, text, error, blurry, jpeg artifacts, many objects, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature")
}