File size: 4,132 Bytes
3153cb6
 
7df18b0
3153cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab8109
3153cb6
 
 
 
3ab8109
3153cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import streamlit as st

from utils import window, get_depths, get_local_maxima, compute_threshold, get_threshold_segments

st.write("loading ...")

import spacy
nlp = spacy.load('en_core_web_sm')

def print_list(lst):
    for e in lst:
        st.markdown("- " + e)

# Demo start

st.subheader("Topic Segmentation Demo")

uploaded_file = st.file_uploader("choose a text file", type=["txt"])

if uploaded_file is not None: 
    st.session_state["text"] = uploaded_file.getvalue().decode('utf-8')

st.write("OR")

input_text = st.text_area(
    label="Enter text separated by newlines",
    value="",
    key="text",
    height=150

)

button=st.button('Get Segments')

"""
# Radio bar
# BERT or TOPIC
select_names = ["LDA Topic", "BERT"]
model = st.radio(label='Select model', options=select_names, index=0)
"""

if (button==True) and input_text != "":

    # Parse sample document and break it into sentences
    texts = input_text.split('\n')
    sents = []
    for text in texts:
        doc = nlp(text)
        for sent in doc.sents:
            sents.append(sent)

    # Select tokens while ignoring punctuations and stopwords, and lowercase them
    MIN_LENGTH = 3
    tokenized_sents = [[token.lemma_.lower() for token in sent if 
                        not token.is_stop and not token.is_punct and token.text.strip() and len(token) >= MIN_LENGTH] 
                        for sent in sents]


    st.write("building topic model ...")

    # Build gensim dictionary and topic model
    from gensim import corpora, models
    import numpy as np

    np.random.seed(123)

    N_TOPICS = 5
    N_PASSES = 5

    dictionary = corpora.Dictionary(tokenized_sents)
    bow = [dictionary.doc2bow(sent) for sent in tokenized_sents]
    topic_model = models.LdaModel(corpus=bow, id2word=dictionary, num_topics=N_TOPICS, passes=N_PASSES)

    ###st.write(topic_model.show_topics())


    st.write("inferring topics ...")
    # Infer topics with minimum threshold
    THRESHOLD = 0.05
    doc_topics = list(topic_model.get_document_topics(bow, minimum_probability=THRESHOLD))

    # st.write(doc_topics)

    # get top k topics for each sentence
    k = 3
    top_k_topics = [[t[0] for t in sorted(sent_topics, key=lambda x: x[1], reverse=True)][:k] 
                    for sent_topics in doc_topics]
    # st.write(top_k_topics)

    ###st.write("apply window")

    from itertools import chain

    WINDOW_SIZE = 3

    window_topics = window(top_k_topics, n=WINDOW_SIZE)
    # assert(len(window_topics) == (len(tokenized_sents) - WINDOW_SIZE + 1))
    window_topics = [list(set(chain.from_iterable(window))) for window in window_topics]

    # Encode topics for similarity computation

    from sklearn.preprocessing import MultiLabelBinarizer

    binarizer = MultiLabelBinarizer(classes=range(N_TOPICS))

    encoded_topic = binarizer.fit_transform(window_topics)

    # Get similarities

    st.write("generating segments ...")

    from sklearn.metrics.pairwise import cosine_similarity

    sims_topic = [cosine_similarity([pair[0]], [pair[1]])[0][0] for pair in zip(encoded_topic, encoded_topic[1:])]
    # plot

    # Compute depth scores
    depths_topic = get_depths(sims_topic)
    # plot

    # Get local maxima
    filtered_topic = get_local_maxima(depths_topic, order=1)
    # plot

    ###st.write("compute threshold")
    # Automatic threshold computation
    # threshold_topic = compute_threshold(depths_topic)
    threshold_topic = compute_threshold(filtered_topic)

    # topk_segments = get_topk_segments(filtered_topic, k=5)
    # Select segments based on threshold
    threshold_segments_topic = get_threshold_segments(filtered_topic, threshold_topic)

    # st.write(threshold_topic)

    ###st.write("compute segments")

    segment_ids = threshold_segments_topic + WINDOW_SIZE

    segment_ids = [0] + segment_ids.tolist() + [len(sents)]
    slices = list(zip(segment_ids[:-1], segment_ids[1:]))

    segmented = [sents[s[0]: s[1]] for s in slices]

    for segment in segmented[:-1]:
        print_list([s.text for s in segment])
        st.markdown("""---""")
    print_list([s.text for s in segmented[-1]])