Spaces:
Sleeping
Sleeping
File size: 24,801 Bytes
a2f0a76 e84e7ba a2f0a76 abb9b5c a2f0a76 b01deab 209be85 5739f5b b01deab 777327c b01deab a86a8e7 5739f5b b01deab 5739f5b b01deab 209be85 b01deab 209be85 b01deab a2f0a76 dceb9c8 abb9b5c 1b6f742 6e468a2 a2f0a76 dceb9c8 a2f0a76 9a68fe0 6e468a2 eaf1cf7 6e468a2 1b6f742 b01deab 9a68fe0 a8b7c78 9a68fe0 229b0d0 9a68fe0 b01deab 84b6b6e 9a68fe0 b01deab 9a68fe0 eaf1cf7 6e468a2 a2f0a76 2f530ac abb9b5c 2f530ac e666fb0 2f530ac e666fb0 4f3d491 e666fb0 4f3d491 e666fb0 ad2eda8 e666fb0 abb9b5c e666fb0 4f3d491 e9462be 2cbc535 f2fcd4b abb9b5c 7bb2d34 abb9b5c 956e5c8 5072362 e9462be abb9b5c e9462be abb9b5c e9462be 956e5c8 2cbc535 2f530ac a2f0a76 26c7417 a2f0a76 6bc5093 017f24f f30bc43 017f24f 070e657 f30bc43 017f24f 6bc5093 017f24f f4fd1d4 017f24f ba8a3b5 017f24f abb9b5c 40a53c6 d05356f a2f0a76 a52b632 a2f0a76 a52b632 8114051 a52b632 2385ba5 7bb2d34 030463f 8114051 598c23f abb9b5c 598c23f 1a8d286 78248ce 1a8d286 598c23f f30bc43 6ed7ae3 a2f0a76 a52b632 017f24f a2f0a76 40a53c6 abb9b5c 40a53c6 abb9b5c 98e1dbb 9754741 e666fb0 abb9b5c e666fb0 abb9b5c c96a2d9 b5f06f2 c96a2d9 a2f0a76 6bc5093 6f6b2bd 39b37d9 1a8d286 512b477 070e657 512b477 6f6b2bd 92c8c79 c644de6 a2f0a76 92c8c79 c644de6 a2f0a76 92c8c79 c644de6 a2f0a76 92c8c79 c644de6 1a8d286 a2f0a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
#---------------------------------------------------Requirements----------------------------------------------------------------------
import streamlit as st
import pandas as pd
import random
import numpy as np
import re
import json
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import requests
from bs4 import BeautifulSoup
from datetime import date
import time
from collections import Counter
import nltk
from nltk.corpus import stopwords
#---------------------------------------------------Scraping Function----------------------------------------------------------------------
@st.cache_data
def scrape_cnbc_data(query, date, jumlah, param_kosong):
data = []
page = 1
progress_text = "Scraping in progress. Please wait."
my_bar = st.progress(len(data), text=progress_text)
while len (data) < jumlah :
try :
url = f"https://www.cnbcindonesia.com/search?query={query}&p={page}&kanal=&tipe=artikel&date={date}"
user_agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/17.17134",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.1.2 Safari/605.1.15",
]
# Mendapatkan User-Agent acak
random_user_agent = random.choice(user_agents)
# Menggunakan User-Agent dalam permintaan HTTP
headers = {
"User-Agent": random_user_agent,
"Accept-Language": "en-US,en;q=0.5"
}
timeout = 10
response = requests.get(url, headers=headers, timeout = timeout)
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('article')
if not articles:
break
for article in articles:
title = article.find('h2').text.strip()
link = article.find('a')['href']
category = article.find('span', class_ = 'label').text.strip()
date_category = article.find('span', class_='date').text.strip()
text_parts = date_category.split(' - ')
date = text_parts[1].strip()
data.append({
'category': category,
'date': date,
'judul-berita': title,
'link-berita': link,
})
if len(data) > jumlah:
data = data[:jumlah]
break
prop = min(len(data) / jumlah, 1)
my_bar.progress(prop, text=progress_text)
page += 1
except requests.exceptions.RequestException as e:
st.error(f"An error occurred: {e}")
break
time.sleep(1)
my_bar.empty()
return data
@st.cache_data
def scrape_detik_news(query, date, jumlah, param_kosong):
start_page = 1
base_url = "https://www.detik.com/search/searchall"
data = []
progress_text = "Scraping in progress... Please wait..."
my_bar = st.progress(len(data), text=progress_text)
timeout = 10
while len(data) < jumlah:
try:
params = {
"query": query,
"siteid": 2,
"sortby": "time",
"page": start_page
}
url = f'https://www.detik.com/search/searchall?query={query}&siteid=2&sortby=time&page={start_page}'
# Daftar beberapa User-Agent
user_agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/17.17134",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.1.2 Safari/605.1.15",
]
# Mendapatkan User-Agent acak
random_user_agent = random.choice(user_agents)
# Menggunakan User-Agent dalam permintaan HTTP
headers = {
"User-Agent": random_user_agent,
"Accept-Language": "en-US,en;q=0.5"
}
response = requests.get(url, headers=headers, timeout = timeout)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('article')
if not articles :
break
for article in articles :
title = article.find('h2').text.strip()
link = article.find('a')['href']
category = article.find('span', class_='category').text
date_category = article.find('span', class_='date').text
date = date_category.replace(category, '').strip()
data.append({
'category': category,
'date': date,
'judul-berita': title,
'link-berita': link,
})
if len(data) >= jumlah:
data = data[:jumlah]
break
prop = min(len(data) / jumlah, 1)
my_bar.progress(prop, text=progress_text)
start_page += 1
except requests.exceptions.RequestException as e:
st.error(f"An error occurred: {e}")
break
time.sleep(1)
my_bar.empty()
return data
@st.cache_data
def scrape_viva_data(query, date, jumlah, param_kosong):
data = []
page = 1
progress_text = "Scraping in progress. Please wait."
my_bar = st.progress(len(data), text=progress_text)
while len (data) < jumlah :
try :
url = f"https://www.viva.co.id/search?q={query}"
user_agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/17.17134",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.1.2 Safari/605.1.15",
]
# Mendapatkan User-Agent acak
random_user_agent = random.choice(user_agents)
# Menggunakan User-Agent dalam permintaan HTTP
headers = {
"User-Agent": random_user_agent,
"Accept-Language": "en-US,en;q=0.5"
}
timeout = 10
response = requests.get(url, headers=headers, timeout = timeout)
soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('div', class_='card-box ft240 margin-bottom-sm')
if not articles :
break
for article in articles :
title = article.find('h2', class_='title').text
link = article.find('a')['href']
category_element = article.find('span', class_="kanal cl-dark")
category = category_element.text.strip() if category_element else None
date_element = article.find('h4', class_="date")
date_before = date_element.text.strip() if date_element else None
date = date_before.replace(category, '')
data.append({
'category': category,
'date': date,
'judul-berita': title,
'link-berita': link,
})
if len(data) > jumlah:
data = data[:jumlah]
break
prop = min(len(data) / jumlah, 1)
my_bar.progress(prop, text=progress_text)
page += 1
except requests.exceptions.RequestException as e:
st.error(f"An error occurred: {e}")
break
time.sleep(1)
my_bar.empty()
return data
@st.cache_data
def scrape_tempo_data(query, date, jumlah, selected_channel):
data = []
domain = 1
max_domains = 5
progress_text = "Scraping in progress. Please wait."
my_bar = st.progress(len(data), text=progress_text)
# List of channel values
default_channels = {
'All(Latest Only)': '',
'Nasional': '20',
'Metro': '19',
'Dunia': '5',
'Bisnis': '1',
'Bola': '21',
'Sport': '33',
'Gaya': '9',
'Seleb': '32',
'Cantik': '2',
'Tekno': '34',
'Otomotif': '23',
'Travel': '35',
'Blog': '43',
'Difabel': '44',
'Ramadan': '30',
'Kolom': '14',
'Fokus': '8',
'Creative Lab': '47',
'Event': '62',
'Data': '65',
'Cek Fakta': '66',
'Newsletter': '63',
'Inforial': '12'
}
# Ubah channels sesuai dengan selected_channel
if selected_channel != 'Defaults' and selected_channel in default_channels:
channels = {selected_channel: default_channels[selected_channel]}
else:
channels = default_channels
seen_titles = set() # Set untuk melacak judul berita yang sudah muncul
try:
while len(data) < jumlah and domain <= max_domains:
for kanal, value in channels.items():
url = f"https://www.tempo.co/search?waktu={waktu}&kanal={value}&subkanal=&domain={domain}&q={query}"
user_agents = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/17.17134",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/11.1.2 Safari/605.1.15",
]
# Get a random User-Agent
random_user_agent = random.choice(user_agents)
# Use User-Agent in the HTTP request
headers = {
"User-Agent": random_user_agent,
"Accept-Language": "en-US,en;q=0.5"
}
timeout = 10
response = requests.get(url, headers=headers, timeout=timeout)
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('div', class_='card-box ft240 margin-bottom-sm')
if not articles:
break
for article in articles:
title = article.find('h2', class_='title').text
# Hanya proses artikel yang belum pernah ditemui
if title not in seen_titles:
link = article.find('a')['href']
category_element = article.find('span', class_="kanal cl-dark")
category = category_element.text.strip() if category_element else None
date_element = article.find('h4', class_="date")
date_before = date_element.text.strip() if date_element else None
date = date_before.replace(category, '')
data.append({
'category': category,
'kanal' : kanal,
'date': date,
'judul-berita': title,
'link-berita': link,
})
seen_titles.add(title) # Tambahkan judul berita ke set
if len(data) >= jumlah:
break
if len(data) >= jumlah:
break
prop = min(len(data) / jumlah, 1)
my_bar.progress(prop, text=progress_text)
domain += 1
except requests.exceptions.RequestException as e:
st.error(f"An error occurred: {e}")
time.sleep(1)
my_bar.empty()
return data
#---------------------------------------------------Data Cleaning (RegEx)----------------------------------------------------------------------
def clean_text(text):
# Pastikan text adalah string
if not isinstance(text, str):
text = str(text)
# Tahap-1: Menghapus karakter non-ASCII
text = re.sub(r'[^\x00-\x7F]+', '', text)
# Tahap-2: Menghapus URL
text = re.sub(r'http[s]?://.[a-zA-Z0-9./_?=%&#+!]+', '', text)
text = re.sub(r'pic.twitter.com?.[a-zA-Z0-9./_?=%&#+!]+', '', text)
# Tahap-3: Menghapus mentions
text = re.sub(r'@[\w]+', '', text)
# Tahap-4: Menghapus hashtag
text = re.sub(r'#([\w]+)', '', text)
# Tahap-5 Menghapus 'amp' yang menempel pada '&' dan 'gt' yang menempel pada '&'
text = re.sub(r'&|>', '', text)
# Tahap-6: Menghapus karakter khusus (simbol)
text = re.sub(r'[!$%^&*@#()_+|~=`{}\[\]%\-:";\'<>?,./]', '', text)
# Tahap-7: Menghapus angka
text = re.sub(r'[0-9]+', '', text)
# Tahap-8: Menggabungkan spasi ganda menjadi satu spasi
text = re.sub(' +', ' ', text)
# Tahap-9: Menghapus spasi di awal dan akhir kalimat
text = text.strip()
# Tahap-10: Konversi teks ke huruf kecil
text = text.lower()
# Tahap-11: koreksi duplikasi tiga karakter beruntun atau lebih (contoh. yukkk)
# text = re.sub(r'([a-zA-Z])\1\1', '\\1', text)
#text = re.sub(r'(.)(\1{2,})', r'\1\1', text)
text = re.sub(r'(\w)\1{2,}', r'\1', text)
return text
#---------------------------------------------------Normalisasi----------------------------------------------------------------------
# Membaca kamus kata gaul Salsabila
kamus_path = '_json_colloquial-indonesian-lexicon.txt' # Ganti dengan path yang benar
with open(kamus_path) as f:
data = f.read()
lookp_dict = json.loads(data)
# Dict kata gaul saya sendiri yang tidak masuk di dict Salsabila
kamus_sendiri_path = 'kamus_gaul_custom.txt'
with open(kamus_sendiri_path) as f:
kamus_sendiri = f.read()
kamus_gaul_baru = json.loads(kamus_sendiri)
# Menambahkan dict kata gaul baru ke kamus yang sudah ada
lookp_dict.update(kamus_gaul_baru)
# Fungsi untuk normalisasi kata gaul
def normalize_slang(text, slang_dict):
words = text.split()
normalized_words = [slang_dict.get(word, word) for word in words]
return ' '.join(normalized_words)
#---------------------------------------------------NLTK Remove Stopwords----------------------------------------------------------------------
# Inisialisasi stopwords bahasa Indonesia
nltk.download("stopwords")
stop_words = set(stopwords.words("indonesian"))
def remove_stopwords(text, stop_words):
# Pecah teks menjadi kata-kata
words = text.split()
# Hapus stopwords bahasa Indonesia
words = [word for word in words if word not in stop_words]
return " ".join(words)
def preprocessing_data(hidden_data):
# Initialize results
results_prep = []
df = pd.DataFrame(hidden_data)
texts = df["judul-berita"]
# Process the text data
for text in texts:
cleaned_text = clean_text(text)
norm_slang_text = normalize_slang(cleaned_text, lookp_dict)
tanpa_stopwords = remove_stopwords(norm_slang_text, stop_words)
results_prep.append({
'judul-berita': text,
'cleaned-text' : cleaned_text,
'normalisasi-text' : norm_slang_text,
'stopwords-remove' : tanpa_stopwords,
})
return results_prep
def eksplorasi_data(selected_options, results, colormap, words):
# Kolom pertama untuk Word Cloud
if 'Hasil EDA' in selected_options:
# Membagi tampilan menjadi dua kolom
columns = st.columns(2)
all_texts = ""
with columns[0]:
if results:
all_texts = all_texts = [result.get('stopwords-remove') for result in results if pd.notna(result.get('stopwords-remove'))]
all_texts = " ".join(all_texts)
st.subheader("Word Cloud")
if all_texts:
wordcloud = WordCloud(width=800, height=500, background_color='white',
colormap=colormap,
contour_color='black',
contour_width=2,
mask=None).generate(all_texts)
st.image(wordcloud.to_array())
# Kolom kedua untuk Most Common Words
with columns[1]:
st.subheader("Most Common Words")
if all_texts:
word_counts = Counter(all_texts.split())
most_common_words = word_counts.most_common(words)
words, counts = zip(*most_common_words)
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(words, counts)
ax.set_xlabel("Kata-kata")
ax.set_ylabel("Jumlah")
ax.set_title("Kata-kata Paling Umum")
ax.tick_params(axis='x', rotation=45)
st.pyplot(fig)
@st.cache_data
def scrape_and_explore_data(_scrape_function, query, date, jumlah, selected_options, colormap, words, param):
data_df = _scrape_function(query, date, jumlah, param)
hidden_data = data_df
scraping_done = True
results = preprocessing_data(hidden_data)
# Eksplorasi Data
eksplorasi_data(selected_options, results, colormap, words)
return hidden_data, scraping_done, results
#---------------------------------------------------User Interface----------------------------------------------------------------------
# Streamlit UI
st.title("Aplikasi Web Scraping & Explorasi Data")
with st.expander("Scraping Settings :"):
# Pilihan untuk memilih situs web
selected_site = st.selectbox("Pilih Situs Web :", ["CNBC Indonesia", "Detik.com", "Viva.co.id", "Tempo.co", "Liputan6.com"])
if selected_site == "Tempo.co":
waktu = st.selectbox("Pilih Rentang Waktu :", ["1tahun", "1bulan", "1minggu", "1hari", "6jam"])
selected_channel = st.selectbox("Pilih Kanal :", ['Defaults','All(Latest Only)', 'Nasional', 'Metro', 'Dunia', 'Bisnis', 'Bola', 'Sport', 'Gaya', 'Seleb', 'Cantik', 'Tekno', 'Otomotif', 'Travel', 'Blog', 'Difabel', 'Ramadan', 'Kolom', 'Fokus', 'Creative Lab', 'Event', 'Data', 'Cek Fakta', 'Newsletter', 'Inforial'])
query = st.text_input("Masukkan Query :").replace(' ', '+')
jumlah = st.number_input("Masukkan Estimasi Banyak Data :", min_value = 1, step = 1, placeholder="Type a number...")
date = date.today()
download_format = st.selectbox("Pilih Format Unduhan :", ["XLSX", "CSV", "JSON", "TXT"])
param_kosong = []
with st.expander("Preference Settings :"):
selected_options = st.multiselect(
'Pilih tampilan:',
['Hasil Scraping', 'Hasil Preprocessing', 'Hasil EDA'],
["Hasil Scraping", "Hasil EDA"]
)
if "Hasil EDA" in selected_options:
colormap = st.selectbox("Pilih Warna Wordclouds :", ["Greys", "Purples", "Blues", "Greens", "Oranges", "Reds", "YlOrBr", "YlOrRd", "OrRd", "PuRd", "RdPu", "BuPu", "GnBu", "PuBu", "YlGnBu", "PuBuGn", "BuGn", "YlGn"])
words = st.number_input("Masukkan Jumlah Most Common Words :", min_value = 1, max_value = 15, step = 1, value = 10, placeholder="Type a number...")
else :
colormap = "Greys"
words = 10
st.info('Tekan "Mulai Scraping" kembali jika tampilan menghilang ', icon="ℹ️")
#------------------------------------------------------------Bakcend----------------------------------------------------------------------------------
# Variabel tersembunyi untuk menyimpan hasil scraping
hidden_data = []
scraping_done = False # Tambahkan variabel ini
if st.button("Mulai Scraping"):
if not query:
st.error("Mohon isi query.")
else:
# CNBC Indonesia
if selected_site == "CNBC Indonesia":
hidden_data, scraping_done, results = scrape_and_explore_data(scrape_cnbc_data, query, date.strftime("%Y/%m/%d"), jumlah, selected_options, colormap, words, param_kosong)
# Detik.com
elif selected_site == "Detik.com":
hidden_data, scraping_done, results = scrape_and_explore_data(scrape_detik_news, query, date, jumlah, selected_options, colormap, words, param_kosong)
# Viva.co.id
elif selected_site == "Viva.co.id":
st.warning("Masih dalam penegmbangan, silahkan gunakan situs yang lain.")
hidden_data, scraping_done, results = scrape_and_explore_data(scrape_viva_data, query, date, jumlah, selected_options, colormap, words, param_kosong)
# Tempo.co
elif selected_site == "Tempo.co":
st.warning("Masih dalam penegmbangan, silahkan gunakan situs yang lain.")
hidden_data, scraping_done, results = scrape_and_explore_data(scrape_tempo_data, query, waktu, jumlah, selected_options, colormap, words, selected_channel)
# Liputan6.com
elif selected_site == "Liputan6.com":
st.error("Belum bisa dipakai.")
#---------------------------------------------------Download File & Hasil Scraping----------------------------------------------------------------------
# Tampilkan hasil scraping
if scraping_done:
if hidden_data:
df = pd.DataFrame(hidden_data)
df_prep = pd.DataFrame(results)
# Menampilkan hasil sentimen dalam kotak yang dapat diperluas
if 'Hasil Scraping' in selected_options:
with st.expander(f"Hasil Scraping {selected_site} :"):
st.write(df)
if 'Hasil Preprocessing' in selected_options:
with st.expander(f"Hasil Preprocessing Data :"):
st.write(df_prep)
if download_format == "XLSX":
df.to_excel(f"hasil_scraping_{query}.xlsx", index=False)
df_prep.to_excel(f"hasil_preprocess_{query}.xlsx", index=False)
st.download_button(label=f"Unduh Hasil Scraping XLSX ({len(hidden_data)} data)", data=open(f"hasil_scraping_{query}.xlsx", "rb").read(), key="xlsx_download", file_name=f"hasil_scraping_{query}.xlsx")
st.download_button(label=f"Unduh Hasil Preprocess XLSX ({len(results)} data)", data=open(f"hasil_preprocess_{query}.xlsx", "rb").read(), key="xlsx_download_2", file_name=f"hasil_preprocess_{query}.xlsx")
elif download_format == "CSV":
csv = df.to_csv(index=False)
csv_prep = df_prep.to_csv(index = False)
st.download_button(label=f"Unduh Hasil Scraping CSV ({len(hidden_data)} data)", data=csv, key="csv_download", file_name=f"hasil_scraping_{query}.csv")
st.download_button(label=f"Unduh Hasil Preprocess CSV ({len(results)} data)", data=csv_prep, key="csv_download_2", file_name=f"hasil_preprocess_{query}.csv")
elif download_format == "JSON":
json_data = pd.DataFrame(hidden_data, columns=["date", "judul-berita", "link-berita"]).to_json(orient="records")
json_data_prep = pd.DataFrame(results, columns=["Teks", "Cleaned Text", "Norm Text", "Tanpa Stopwords"]).to_json(orient="records")
st.download_button(label=f"Unduh Hasil Scraping JSON ({len(hidden_data)} data)", data=json_data, key="json_download", file_name=f"hasil_scraping_{query}.json")
st.download_button(label=f"Unduh Hasil Preprocess JSON ({len(results)} data)", data=json_data_prep, key="json_download_2", file_name=f"hasil_preprocess_{query}.json")
elif download_format == "TXT":
text_data = "\n".join([f"{row['date']} - {row['judul-berita']} - {row['link-berita']}" for row in hidden_data])
st.download_button(label=f"Unduh Hasil Scraping TXT ({len(hidden_data)} data)", data=text_data, key="txt_download", file_name=f"hasil_scraping_{query}.txt")
if not hidden_data:
st.warning(f"Tidak ada data pada query '{query}'", icon="⚠️")
if not scraping_done:
st.write("Tidak ada data untuk diunduh.")
st.divider()
github_link = "https://github.com/naufalnashif/"
st.markdown(f"GitHub: [{github_link}]({github_link})")
instagram_link = "https://www.instagram.com/naufal.nashif/"
st.markdown(f"Instagram: [{instagram_link}]({instagram_link})")
st.write('Terima kasih telah mencoba demo ini!')
|