File size: 12,974 Bytes
7562bb6
 
 
 
 
 
 
 
 
 
 
 
6e08746
 
7562bb6
 
6e08746
 
 
7562bb6
 
 
 
 
 
6e08746
7562bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d2f3
7562bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb3d2f3
 
7562bb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import streamlit as st
import numpy as np
import pandas as pd
import datasets
from dataclasses import asdict
from PIL import Image
import yaml
import textwrap
import tornado
import json
import time
import sys
from git import Repo
import os


if not os.path.exists('datasets_clone'):
    Repo.clone_from('https://github.com/huggingface/datasets.git', 'datasets_clone')

MAX_SIZE = 40000000000
# if len(sys.argv) > 1:
#     path_to_datasets = sys.argv[1]
# else:
#     path_to_datasets = None

path_to_datasets = 'datasets_clone/datasets/'

## Hack to extend the width of the main pane.
def _max_width_():
    max_width_str = f"max-width: 1000px;"
    st.markdown(
        f"""
    <style>
    .reportview-container .main .block-container{{
        {max_width_str}
    }}
    th {{
        text-align: left;
        font-size: 110%;
       
     }}
    tr:hover {{
        background-color: #ffff99;
        }}
    </style>
    """,
        unsafe_allow_html=True,
    )


_max_width_()


def render_features(features):
    if isinstance(features, dict):
        return {k: render_features(v) for k, v in features.items()}
    if isinstance(features, datasets.features.ClassLabel):
        return features.names

    if isinstance(features, datasets.features.Value):
        return features.dtype

    if isinstance(features, datasets.features.Sequence):
        return {"[]": render_features(features.feature)}
    return features


app_state = st.experimental_get_query_params()
# print(app_state)
start = True
loaded = True
INITIAL_SELECTION = ""
# if app_state == "NOT_INITIALIZED":
#     latest_iteration = st.empty()
#     bar = st.progress(0)
#     start = False
#     for i in range(0, 101, 10):
#         # Update the progress bar with each iteration.
#         # latest_iteration.text(f'Iteration {i+1}')
#         bar.progress(i)
#         time.sleep(0.1)
#         if i == 100:
#             start = True
#             bar.empty()
#             loaded = True

#             app_state = st.experimental_get_query_params()
#             print("appstate is", app_state)
app_state.setdefault("dataset", "glue")
if len(app_state.get("dataset", [])) == 1:
    app_state["dataset"] = app_state["dataset"][0]
    INITIAL_SELECTION = app_state["dataset"]
if len(app_state.get("config", [])) == 1:
    app_state["config"] = app_state["config"][0]
print(INITIAL_SELECTION)

if start:
    ## Logo and sidebar decoration.
    st.sidebar.markdown(
        """<center>
    <a href="https://github.com/huggingface/datasets">
    </a>
    </center>""",
        unsafe_allow_html=True,
    )
    st.sidebar.image("datasets_logo_name.png", width=300)
    st.sidebar.markdown(
        "<center><h2><a href='https://github.com/huggingface/datasets'>github/huggingface/datasets</h2></a></center>",
        unsafe_allow_html=True,
    )
    st.sidebar.markdown(
        """
    <center>
        <a target="_blank" href="https://huggingface.co/docs/datasets/">Docs</a> |
        <a target="_blank" href="https://huggingface.co/datasets">Browse</a>
    | <a href="https://huggingface.co/new-dataset" target="_blank">Add Dataset</a>
    </center>""",
        unsafe_allow_html=True,
    )
    st.sidebar.subheader("")

    ## Interaction with the datasets libary.
    # @st.cache
    def get_confs(opt):
        "Get the list of confs for a dataset."
        if path_to_datasets is not None and opt is not None:
            path = path_to_datasets + opt
        else:
            path = opt

        module_path = datasets.load.prepare_module(path, dataset=True
        )
        # Get dataset builder class from the processing script
        builder_cls = datasets.load.import_main_class(module_path[0], dataset=True)
        # Instantiate the dataset builder
        confs = builder_cls.BUILDER_CONFIGS
        if confs and len(confs) > 1:
            return confs
        else:
            return []

    # @st.cache(allow_output_mutation=True)
    def get(opt, conf=None):
        "Get a dataset from name and conf"
        if path_to_datasets is not None:
            path = path_to_datasets + opt
        else:
            path = opt
        
        module_path = datasets.load.prepare_module(path, dataset=True)
        builder_cls = datasets.load.import_main_class(module_path[0], dataset=True)
        if conf:
            builder_instance = builder_cls(name=conf, cache_dir=path if path_to_datasets is not None else None)
        else:
            builder_instance = builder_cls(cache_dir=path if path_to_datasets is not None else None)
        fail = False
        if path_to_datasets is not None:
            dts = datasets.load_dataset(path,
                                   name=builder_cls.BUILDER_CONFIGS[0].name if builder_cls.BUILDER_CONFIGS else None,
            )
            dataset = dts

        elif (
            builder_instance.manual_download_instructions is None
            and builder_instance.info.size_in_bytes is not None
            and builder_instance.info.size_in_bytes < MAX_SIZE):
            builder_instance.download_and_prepare()
            dts = builder_instance.as_dataset()
            dataset = dts
        else:
            dataset = builder_instance
            fail = True
        return dataset, fail

    # Dataset select box.
    dataset_names = []
    selection = None

    import glob
    if path_to_datasets is None:
        list_of_datasets = datasets.list_datasets(with_community_datasets=False)
    else:
        list_of_datasets = sorted(glob.glob(path_to_datasets + "*"))
    print(list_of_datasets)
    for i, dataset in enumerate(list_of_datasets):
        dataset = dataset.split("/")[-1]
        if INITIAL_SELECTION and dataset == INITIAL_SELECTION:
            selection = i
        dataset_names.append(dataset )

    if selection is not None:
        option = st.sidebar.selectbox(
            "Dataset", dataset_names, index=selection, format_func=lambda a: a
        )
    else:
        option = st.sidebar.selectbox("Dataset", dataset_names, format_func=lambda a: a)
    print(option)
    app_state["dataset"] = option
    st.experimental_set_query_params(**app_state)

    # Side bar Configurations.
    configs = get_confs(option)
    conf_avail = len(configs) > 0
    conf_option = None
    if conf_avail:
        start = 0
        for i, conf in enumerate(configs):
            if conf.name == app_state.get("config", None):
                start = i
        conf_option = st.sidebar.selectbox(
            "Subset", configs, index=start, format_func=lambda a: a.name
        )
        app_state["config"] = conf_option.name

    else:
        if "config" in app_state:
            del app_state["config"]
    st.experimental_set_query_params(**app_state)

    dts, fail = get(str(option), str(conf_option.name) if conf_option else None)

    # Main panel setup.
    if fail:
        st.markdown(
            "Dataset is too large to browse or requires manual download. Check it out in the datasets library! \n\n Size: "
            + str(dts.info.size_in_bytes)
            + "\n\n Instructions: "
            + str(dts.manual_download_instructions)
        )
    else:

        k = list(dts.keys())
        index = 0
        if "train" in dts.keys():
            index = k.index("train")
        split = st.sidebar.selectbox("Split", k, index=index)

        d = dts[split]

        keys = list(d[0].keys())

        st.header(
            "Dataset: "
            + option
            + " "
            + (("/ " + conf_option.name) if conf_option else "")
        )

        st.markdown(
            "*Homepage*: "
            + d.info.homepage
            + "\n\n*Dataset*: https://huggingface.co/datasets/%s"
            % (option)
        )

        md = """
        %s
        """ % (
            d.info.description.replace("\\", "") if option else ""
        )
        st.markdown(md)

        step = 50
        offset = st.sidebar.number_input(
            "Offset (Size: %d)" % len(d),
            min_value=0,
            max_value=int(len(d)) - step,
            value=0,
            step=step,
        )

        image_classification, gallary = False, False
        if d.info.task_templates:
            for task_template in d.info.task_templates:
                if task_template.task == 'image-classification':
                    image_classification = True
                    st.sidebar.markdown('\n---\n')
                    gallary = st.sidebar.checkbox("Show Image Gallary 🖼️", False) if image_classification else None
                    break

        citation = st.sidebar.checkbox("Show Citations 📎", False)
        table = image_classification or not st.sidebar.checkbox("Show List View 📋", False)
        show_features = st.sidebar.checkbox("Show Features 🧐", True)

        md = """
```
%s
```
""" % (
            d.info.citation.replace("\\", "").replace("}", " }").replace("{", "{ "),
        )
        if citation:
            st.markdown(md)
        # st.text("Features:")
        if show_features:
            if not gallary:
                on_keys = st.multiselect("Features", keys, keys)
            st.write(render_features(d.features))
        else:
            on_keys = keys
        if not table and not (image_classification and gallary):
            # Full view.
            for item in range(offset, offset + step):
                st.text("        ")
                st.text("                  ----  #" + str(item))
                st.text("        ")
                # Use st to write out.
                for k in on_keys:
                    v = d[item][k]
                    st.subheader(k)
                    if isinstance(v, str):
                        out = v
                        st.text(textwrap.fill(out, width=120))
                    elif (
                        isinstance(v, bool)
                        or isinstance(v, int)
                        or isinstance(v, float)
                    ):
                        st.text(v)
                    else:
                        st.write(v)

        elif image_classification and gallary:
            # Image Gallary View.
            d = d.prepare_for_task('image-classification')
            n_cols, n_rows = 5, 10

            images = []
            labels = []
            for item in range(offset, offset+step):
                image = Image.open(d[item]['image_file_path']).convert("RGB")
                images.append(image)

                label_id = d[item]['labels']
                label_str = d.features['labels'].int2str(label_id)
                labels.append(f"#{item} | {label_str}")

            n_rows = 1 + len(images) // int(n_cols)

            cols_per_row = [st.beta_columns(n_cols) for _ in range(n_rows)]
            cols = [column for row in cols_per_row for column in row]
            for idx, (image, label) in enumerate(zip(images, labels)):
                cols[idx].image(image, caption=label)

        else:
            # Table view. Use Pandas.
            df = []
            for item in range(offset, offset + step):
                df_item = {}
                df_item["_number"] = item
                for k in on_keys:
                    v = d[item][k]
                    if isinstance(v, str):
                        out = v
                        df_item[k] = textwrap.fill(out, width=50)
                    elif (
                        isinstance(v, bool)
                        or isinstance(v, int)
                        or isinstance(v, float)
                    ):
                        df_item[k] = v
                    else:
                        out = json.dumps(v, indent=2, sort_keys=True)
                        df_item[k] = out
                df.append(df_item)
            df2 = df
            df = pd.DataFrame(df).set_index("_number")

            def hover(hover_color="#ffff99"):
                return dict(
                    selector="tr:hover",
                    props=[("background-color", "%s" % hover_color)],
                )

            styles = [
                hover(),
                dict(
                    selector="th",
                    props=[("font-size", "150%"), ("text-align", "center")],
                ),
                dict(selector="caption", props=[("caption-side", "bottom")]),
            ]

            # Table view. Use pands styling.
            style = df.style.set_properties(
                **{"text-align": "left", "white-space": "pre"}
            ).set_table_styles([dict(selector="th", props=[("text-align", "left")])])
            style = style.set_table_styles(styles)
            st.table(style)

    # Additional dataset installation and sidebar properties.
    md = """
    ### Code
    ```python
    !pip install datasets
    from datasets import load_dataset
    dataset = load_dataset(
       '%s'%s)
    ```
    """ % (
        option,
        (", '" + conf_option.name + "'") if conf_option else "",
    )
    st.sidebar.markdown(md)