Spaces:
Runtime error
Runtime error
File size: 15,764 Bytes
39d5658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os.path as osp
import time
from collections import OrderedDict
import numpy as np
# https://github.com/numpy/numpy/issues/21079
try:
import numpy.distutils
numpy.distutils.__config__.blas_opt_info = np.distutils.__config__.blas_ilp64_opt_info
except Exception:
pass
from nlgeval import NLGEval
import torch
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
from lavila.data import datasets
from lavila.data.video_transforms import Permute, SpatialCrop, TemporalCrop
from lavila.models import models
from lavila.models.utils import inflate_positional_embeds
from lavila.utils import distributed as dist_utils
from lavila.utils.preprocess import generate_tokenizer
def decode_one(generated_ids, tokenizer):
# get the index of <EOS>
if tokenizer.eos_token_id == tokenizer.bos_token_id:
if tokenizer.eos_token_id in generated_ids[1:].tolist():
eos_id = generated_ids[1:].tolist().index(tokenizer.eos_token_id) + 1
else:
eos_id = len(generated_ids.tolist()) - 1
elif tokenizer.eos_token_id in generated_ids.tolist():
eos_id = generated_ids.tolist().index(tokenizer.eos_token_id)
else:
eos_id = len(generated_ids.tolist()) - 1
generated_text_str = tokenizer.tokenizer.decode(generated_ids[1:eos_id].tolist())
return generated_text_str
def get_args_parser():
parser = argparse.ArgumentParser(description='LAVILA 0-shot evaluations', add_help=False)
parser.add_argument('--dataset', default='ego4d', type=str,
choices=['ego4d'])
parser.add_argument('--root',
default='datasets/Ego4D/video_5min_chunks_288px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata-val',
default='datasets/Ego4D/ego4d_val.pkl',
type=str, help='path to metadata file (val set)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--num-crops', default=1, type=int, help='number of crops in transforms')
parser.add_argument('--num-clips', default=1, type=int, help='number of clips (for untrimmed videos, eg. Charades)')
parser.add_argument('--clip-length', default=4, type=int, help='clip length')
parser.add_argument('--clip-stride', default=16, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
parser.add_argument('--batch-size', default=16, type=int, help='batch_size')
# captioning options
parser.add_argument('--caption-sample', default='multinomial_sample',
choices=['multinomial_sample', 'beam_sample', 'group_beam_search'])
parser.add_argument('--caption-top-k', default=None, type=int, help='top-k sampling (predecessor of nucleus sampling)')
parser.add_argument('--caption-top-p', default=0.95, type=float, help='top-p sampling sampling (aka nucleus sampling)')
parser.add_argument('--caption-num-beams', default=3, type=int)
parser.add_argument('--caption-num-beam-groups', default=1, type=int)
parser.add_argument('--caption-temperature', default=0.7, type=float)
parser.add_argument('--caption-length-penalty', default=1.0, type=float)
parser.add_argument('--caption-num-return-sequences', default=1, type=int)
parser.add_argument('--caption-max-len', default=77, type=int)
parser.add_argument('--caption-disable-visual', action='store_true')
parser.add_argument('--caption-early-stop', action='store_true', help='early stopping to save computation')
parser.add_argument('--caption-output-filename', default='caption.txt', type=str)
# others
parser.add_argument('--eval-freq', default=1000, type=int,
help='percentage (1/eval_freq) of val data to evaluate (for fast prototyping)')
parser.add_argument('--print-freq', default=10, type=int)
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint')
parser.add_argument('--use-half', action='store_true')
return parser
def main(args):
if args.resume:
ckpt_path = args.resume
elif osp.isfile(osp.join(args.output_dir, 'checkpoint_best.pt')):
ckpt_path = osp.join(args.output_dir, 'checkpoint_best.pt')
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
# create model
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = ckpt['args']
print('=> creating model: {}'.format(old_args.model))
model = getattr(models, old_args.model)(
text_use_cls_token=old_args.use_cls_token,
project_embed_dim=old_args.project_embed_dim,
gated_xattn=False if 'gated_xattn' not in old_args else old_args.gated_xattn,
timesformer_gated_xattn=False if 'timesformer_gated_xattn' not in old_args else old_args.timesformer_gated_xattn,
timesformer_freeze_space=False if 'timesformer_freeze_space' not in old_args else old_args.timesformer_freeze_space,
freeze_lm_vclm=False if 'freeze_lm_vclm' not in old_args else old_args.freeze_lm_vclm,
freeze_visual_vclm=False if 'freeze_visual_vclm' not in old_args else old_args.freeze_visual_vclm,
num_frames=args.clip_length,
drop_path_rate=0,
)
model.cuda()
if 'TIMESFORMER' in old_args.model or 'EGOVLP' in old_args.model:
# inflate weight
print('=> inflating PE in models due to different frame numbers')
state_dict = inflate_positional_embeds(
model.state_dict(), state_dict,
num_frames=args.clip_length,
load_temporal_fix='bilinear',
)
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {}, best_metric = {})".format(args.resume, ckpt['epoch'], ckpt['best_acc1']))
torch.backends.cudnn.benchmark = True
tokenizer = generate_tokenizer(old_args.model)
crop_size = 224 if '336PX' not in old_args.model else 336
if args.num_crops == 1 and args.num_clips == 1:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
])
else:
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if ('OPENAI' not in old_args.model) else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
TemporalCrop(frames_per_clip=args.clip_length, stride=args.clip_length),
SpatialCrop(crop_size=crop_size, num_crops=args.num_crops),
])
val_dataset = datasets.VideoCaptionDatasetCLIP(
args.dataset,
args.root,
args.metadata_val,
transform=val_transform,
is_training=False,
tokenizer=tokenizer,
clip_length=args.clip_length,
clip_stride=args.clip_stride,
sparse_sample=False,
subsample_stride=args.eval_freq,
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=False)
validate_caption(val_loader, model, tokenizer, args.caption_output_filename, use_half=args.use_half)
def validate_caption(val_loader, model, tokenizer, output_filename='caption.txt', use_half=False):
model.eval()
if args.use_half:
model = model.half()
nlgeval = NLGEval()
f = open(output_filename, 'w')
ppls_all = []
ppls_with_teacher_all = []
reference = []
hypothesis = []
end_time = time.time()
id_offset = 0
print('=> start forwarding')
with torch.no_grad():
for i, inputs in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
images = inputs[0].cuda(non_blocking=True)
if use_half:
images = images.half()
target = inputs[1].cuda(non_blocking=True)
# encode images
image_features = dist_utils.get_model(model).encode_image(images)
# teacher forcing (to get standard ppl metric)
generated_text_ids_with_teacher, ppls_with_teacher = dist_utils.get_model(model).generate(
image_features,
tokenizer,
target=target,
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
teacher_forcing=True,
early_stopping=args.caption_early_stop,
)
if args.caption_sample == 'multinomial_sample':
assert args.caption_num_beam_groups == 1
generated_text_ids, ppls = dist_utils.get_model(model).generate(
image_features,
tokenizer,
target=target.repeat_interleave(args.caption_num_return_sequences, dim=0),
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
num_return_sequences=args.caption_num_return_sequences,
temperature=args.caption_temperature,
early_stopping=args.caption_early_stop,
)
elif args.caption_sample == 'beam_sample':
assert args.caption_num_beam_groups == 1
generated_text_ids, ppls = dist_utils.get_model(model).beam_sample(
image_features,
tokenizer,
target=target,
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
temperature=args.caption_temperature,
length_penalty=args.caption_length_penalty,
num_beams=args.caption_num_beams,
num_return_sequences=args.caption_num_return_sequences,
early_stopping=args.caption_early_stop,
)
elif args.caption_sample == 'group_beam_search':
assert args.caption_num_beam_groups > 1 and args.caption_num_beams % args.caption_num_beam_groups == 0
generated_text_ids, ppls = dist_utils.get_model(model).group_beam_search(
image_features,
tokenizer,
target=target if not args.caption_no_gt else None,
max_text_length=args.caption_max_len,
top_k=args.caption_top_k,
top_p=args.caption_top_p,
temperature=args.caption_temperature,
length_penalty=args.caption_length_penalty,
num_beams=args.caption_num_beams,
num_beam_groups=args.caption_num_beam_groups,
num_return_sequences=args.caption_num_return_sequences,
early_stopping=args.caption_early_stop,
)
else:
raise NotImplementedError
ppls_all.append(ppls.reshape(-1, args.caption_num_return_sequences).mean(1))
ppls_with_teacher_all.append(ppls_with_teacher)
for j in range(generated_text_ids.shape[0] // args.caption_num_return_sequences):
for k in range(args.caption_num_return_sequences):
jj = j * args.caption_num_return_sequences + k
generated_text_str = decode_one(generated_text_ids[jj], tokenizer)
gt_text = decode_one(target[j], tokenizer)
generated_text_str_with_teacher = decode_one(generated_text_ids_with_teacher[j], tokenizer)
from transformers import BertTokenizer
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
gt_text = bert_tokenizer.decode(bert_tokenizer(gt_text)['input_ids'][1:-1])
generated_text_str = bert_tokenizer.decode(bert_tokenizer(generated_text_str)['input_ids'][1:-1])
generated_text_str_with_teacher = bert_tokenizer.decode(bert_tokenizer(generated_text_str_with_teacher)['input_ids'][1:-1])
reference.append(gt_text)
hypothesis.append(generated_text_str)
s1 = '[{:6d}] Groundtruth | | {}'.format(id_offset + j, gt_text)
s2 = '[{:6d}] Generated | PPL : {:9.3f} | {}'.format(id_offset + j, ppls[jj], generated_text_str)
s3 = '[{:6d}] Generated (w/. teacher) | PPL : {:9.3f} | {}'.format(id_offset + j, ppls_with_teacher[j], generated_text_str_with_teacher)
for s in [s1, s2, s3]:
# if i % args.print_freq == 0:
# print(s)
f.write('{} \n'.format(s))
id_offset += generated_text_ids.shape[0] // args.caption_num_return_sequences
ppls_with_teacher_all = torch.cat(ppls_with_teacher_all, dim=0)
ppls_all = torch.cat(ppls_all, dim=0)
print('PPL (w/. teacher) = {:9.3f}'.format(ppls_with_teacher_all.mean().item()))
print('PPL (w/o. teacher) = {:9.3f}'.format(ppls_all.mean().item()))
f.write('PPL (w/. teacher) = {:9.3f} \n'.format(ppls_with_teacher_all.mean().item()))
f.write('PPL (w/o. teacher) = {:9.3f} \n'.format(ppls_all.mean().item()))
print('Avg length for reference: {:9.3f}'.format(sum(map(lambda sentence: len(sentence.split(' ')), reference)) / len(reference)))
print('Avg length for hypothesis: {:9.3f}'.format(sum(map(lambda sentence: len(sentence.split(' ')), hypothesis)) / len(hypothesis)))
f.write('Avg length for reference: {:9.3f} \n'.format(sum(map(lambda sentence: len(sentence.split(' ')), reference)) / len(reference)))
f.write('Avg length for hypothesis: {:9.3f} \n'.format(sum(map(lambda sentence: len(sentence.split(' ')), hypothesis)) / len(hypothesis)))
print('=> Calling NLGEval')
f.write('=> Calling NLGEval\n')
metrics_dict = nlgeval.compute_metrics([reference], hypothesis)
for k in metrics_dict:
print('{:16s} = {:9.3f}'.format(k, metrics_dict[k]))
f.write('{:16s} = {:9.3f} \n'.format(k, metrics_dict[k]))
f.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser('lavila 0-shot evaluations', parents=[get_args_parser()])
args = parser.parse_args()
main(args)
|