Spaces:
Runtime error
Runtime error
File size: 33,393 Bytes
39d5658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from collections import OrderedDict
import json
import math
import numpy as np
import os
import pandas as pd
import sys
import time
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.cuda.amp as amp
from torch.distributed.optim import ZeroRedundancyOptimizer
import torch.nn.parallel
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
from sklearn.metrics import confusion_matrix
import wandb
from lavila.data import datasets
from lavila.data.video_transforms import Permute, SpatialCrop, TemporalCrop
from lavila.models import models
from lavila.models.tokenizer import (MyBertTokenizer, MyDistilBertTokenizer, MyGPT2Tokenizer, SimpleTokenizer)
from lavila.models.utils import inflate_positional_embeds
from lavila.utils import distributed as dist_utils
from lavila.utils.evaluation import accuracy, get_mean_accuracy
from lavila.utils.meter import AverageMeter, ProgressMeter
from lavila.utils.preprocess import generate_label_map
from lavila.utils.random import random_seed
from lavila.utils.scheduler import cosine_scheduler
from lavila.utils.evaluation_ek100cls import get_marginal_indexes, marginalize
def get_args_parser():
parser = argparse.ArgumentParser(description='lavila finetune and evaluation', add_help=False)
# Data
parser.add_argument('--dataset', default='ek100_cls', type=str,
choices=['ek100_cls', 'egtea'])
parser.add_argument('--root',
default='datasets/EK100/video_ht256px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata-train',
default='datasets/EK100/epic-kitchens-100-annotations/EPIC_100_train.csv',
type=str, help='path to metadata file (train set)')
parser.add_argument('--metadata-val',
default='datasets/EK100/epic-kitchens-100-annotations/EPIC_100_validation.csv',
type=str, help='path to metadata file (val set)')
parser.add_argument('--relevancy-path',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl',
type=str, help='path to relevancy matrix (val set)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--num-crops', default=1, type=int, help='number of crops in transforms for val')
parser.add_argument('--num-clips', default=1, type=int, help='number of clips for val')
parser.add_argument('--clip-length', default=16, type=int, help='clip length')
parser.add_argument('--clip-stride', default=2, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
# Model
parser.add_argument('--pretrain-model', default='', type=str, help='path to pretrain model')
parser.add_argument('--resume', default='', type=str, help='path to resume from')
parser.add_argument('--find-unused-parameters', action='store_true',
help='do this during DDP (useful for models with tied weights)')
parser.add_argument('--drop-path-rate', default=0.1, type=float, help='drop path ratio')
parser.add_argument('--dropout-ratio', default=0.5, type=float, help='dropout ratio for the last linear layer')
parser.add_argument('--num-classes', default=3806, nargs='+', type=int, help='number of classes for the last linear layer')
parser.add_argument('--use-vn-classifier', action='store_true')
parser.add_argument('--use-half', action='store_true', help='use half precision at inference')
# Training
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--warmup-epochs', default=1, type=int)
parser.add_argument('--start-epoch', default=0, type=int)
parser.add_argument('--batch-size', default=16, type=int,
help='number of samples per-device/per-gpu')
parser.add_argument('--use-sgd', action='store_true')
parser.add_argument('--freeze-temperature', action='store_true', help='freeze temperature if set to True')
parser.add_argument('--lr', default=3e-3, type=float)
parser.add_argument('--fix-lr', action='store_true', help='disable cosine lr decay if set True')
parser.add_argument('--lr-start', default=1e-6, type=float,
help='initial warmup lr')
parser.add_argument('--lr-end', default=1e-5, type=float,
help='minimum final lr')
parser.add_argument('--lr-multiplier-on-backbone', default=0.1, type=float, help='lr multiplier for the backbone')
parser.add_argument('--clip-grad-type', default='norm', choices=['norm', 'value'])
parser.add_argument('--clip-grad-value', default=None, type=float, help='')
parser.add_argument('--update-freq', default=1, type=int,
help='optimizer update frequency (i.e. gradient accumulation steps)')
parser.add_argument('--wd', default=0.01, type=float)
parser.add_argument('--betas', default=(0.9, 0.999), nargs=2, type=float)
parser.add_argument('--eps', default=1e-8, type=float)
parser.add_argument('--label-smoothing', default=0.1, type=float, help='label smoothing')
parser.add_argument('--eval-freq', default=5, type=int)
parser.add_argument('--save-freq', default=5, type=int)
parser.add_argument('--disable-amp', action='store_true',
help='disable mixed-precision training (requires more memory and compute)')
parser.add_argument('--use-zero', action='store_true',
help='use ZeroRedundancyOptimizer to save memory')
parser.add_argument('--use-checkpoint', action='store_true',
help='use gradient checkpointing during training for significantly less GPU usage')
# System
parser.add_argument('--print-freq', default=100, type=int, help='print frequency')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--evaluate', action='store_true', help='eval only')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--wandb', action='store_true', help='Enable WandB logging')
return parser
def main(args):
dist_utils.init_distributed_mode(args)
global best_acc1
random_seed(args.seed, dist_utils.get_rank())
if args.pretrain_model:
ckpt_path = args.pretrain_model
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
if args.use_vn_classifier:
assert args.dataset == 'ek100_cls' and len(args.num_classes) == 3
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = ckpt['args']
print("=> creating model: {}".format(old_args.model))
model = getattr(models, old_args.model)(
pretrained=old_args.load_visual_pretrained,
pretrained2d=old_args.load_visual_pretrained is not None,
text_use_cls_token=old_args.use_cls_token,
project_embed_dim=old_args.project_embed_dim,
timesformer_gated_xattn=False,
timesformer_freeze_space=False,
num_frames=args.clip_length,
drop_path_rate=args.drop_path_rate,
)
if 'TIMESFORMER' in old_args.model or 'EGOVLP' in old_args.model:
# inflate weight
print('=> inflating PE in models due to different frame numbers')
state_dict = inflate_positional_embeds(
model.state_dict(), state_dict,
num_frames=args.clip_length,
load_temporal_fix='bilinear',
)
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {})".format(ckpt_path, ckpt['epoch']))
if args.use_vn_classifier:
model = models.VideoClassifierMultiHead(
model.visual,
dropout=args.dropout_ratio,
num_classes_list=args.num_classes
)
else:
assert len(args.num_classes) == 1
model = models.VideoClassifier(
model.visual,
dropout=args.dropout_ratio,
num_classes=args.num_classes[0]
)
model.cuda(args.gpu)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], bucket_cap_mb=200,
find_unused_parameters=args.find_unused_parameters
)
p_wd, p_non_wd = [], []
p_head_wd, p_head_non_wd = [], []
for n, p in model.named_parameters():
if 'fc_cls' in n:
if 'bias' in n:
p_head_non_wd.append(p)
else:
p_head_wd.append(p)
elif not p.requires_grad:
continue # frozen weights
elif p.ndim < 2 or 'bias' in n or 'ln' in n or 'bn' in n:
p_non_wd.append(p)
else:
p_wd.append(p)
optim_params = [
{"params": p_wd, "weight_decay": args.wd, "lr": args.lr * args.lr_multiplier_on_backbone},
{"params": p_non_wd, "weight_decay": 0, "lr": args.lr * args.lr_multiplier_on_backbone},
{"params": p_head_wd, "weight_decay": args.wd},
{"params": p_head_non_wd, "weight_decay": 0}
]
if args.use_zero:
optimizer = ZeroRedundancyOptimizer(
optim_params, optimizer_class=torch.optim.SGD if args.use_sgd else torch.optim.AdamW,
lr=args.lr, betas=args.betas, eps=args.eps, weight_decay=args.wd
)
else:
if args.use_sgd:
optimizer = torch.optim.SGD(optim_params, lr=args.lr, momentum=args.betas[0], weight_decay=args.wd)
else:
optimizer = torch.optim.AdamW(optim_params, lr=args.lr, betas=args.betas,
eps=args.eps, weight_decay=args.wd)
scaler = amp.GradScaler(enabled=not args.disable_amp)
# optionally resume from a checkpoint (takes precedence over autoresume)
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
args.resume = ''
if args.resume:
if os.path.isfile(args.resume):
print("=> loading resume checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
epoch = checkpoint['epoch'] if 'epoch' in checkpoint else 0
args.start_epoch = epoch
if not args.distributed:
state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
state_dict[k.replace('module.', '')] = v
result = model.load_state_dict(state_dict, strict=False)
else:
result = model.load_state_dict(checkpoint['state_dict'], strict=False)
print(result)
optimizer.load_state_dict(checkpoint['optimizer']) if 'optimizer' in checkpoint else ()
scaler.load_state_dict(checkpoint['scaler']) if 'scaler' in checkpoint else ()
best_acc1 = checkpoint['best_acc1']
print("=> loaded resume checkpoint '{}' (epoch {}, best_metric = {})"
.format(args.resume, epoch, best_acc1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
# auto-resume from latest checkpoint in output directory
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
print("=> loading latest checkpoint '{}'".format(latest))
latest_checkpoint = torch.load(latest, map_location='cpu')
args.start_epoch = latest_checkpoint['epoch']
model.load_state_dict(latest_checkpoint['state_dict'])
optimizer.load_state_dict(latest_checkpoint['optimizer'])
scaler.load_state_dict(latest_checkpoint['scaler'])
best_acc1 = latest_checkpoint['best_acc1']
print("=> loaded latest checkpoint '{}' (epoch {})"
.format(latest, latest_checkpoint['epoch']))
cudnn.benchmark = True
# Data loading code
print("=> creating dataset")
if old_args.model.endswith('DISTILBERT_BASE'):
tokenizer = MyDistilBertTokenizer('distilbert-base-uncased')
elif old_args.model.endswith('BERT_BASE'):
tokenizer = MyBertTokenizer('bert-base-uncased')
elif old_args.model.endswith('BERT_LARGE'):
tokenizer = MyBertTokenizer('bert-large-uncased')
elif old_args.model.endswith('GPT2'):
tokenizer = MyGPT2Tokenizer('gpt2')
elif old_args.model.endswith('GPT2_MEDIUM'):
tokenizer = MyGPT2Tokenizer('gpt2-medium')
elif old_args.model.endswith('GPT2_LARGE'):
tokenizer = MyGPT2Tokenizer('gpt2-large')
elif old_args.model.endswith('GPT2_XL'):
tokenizer = MyGPT2Tokenizer('gpt2-xl')
else:
print("Using SimpleTokenizer because of model '{}'. "
"Please check if this is what you want".format(old_args.model))
tokenizer = SimpleTokenizer()
criterion = nn.CrossEntropyLoss(label_smoothing=args.label_smoothing).cuda(args.gpu)
crop_size = 224 if '336PX' not in old_args.model else 336
transforms_list = [
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.RandomResizedCrop(crop_size, scale=(0.5, 1.0)),
transforms.RandomHorizontalFlip(p=0.5),
]
if 'OPENAI' in old_args.model:
transforms_list.append(transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305]))
else:
transforms_list.append(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
train_transform = transforms.Compose(transforms_list)
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if 'OPENAI' not in old_args.model else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
TemporalCrop(frames_per_clip=args.clip_length, stride=args.clip_length),
SpatialCrop(crop_size=crop_size, num_crops=args.num_crops),
])
# build dataset
_, mapping_vn2act = generate_label_map(args.dataset)
if args.dataset == 'ek100_cls':
args.mapping_act2v = {i: int(vn.split(':')[0]) for (vn, i) in mapping_vn2act.items()}
args.mapping_act2n = {i: int(vn.split(':')[1]) for (vn, i) in mapping_vn2act.items()}
args.actions = pd.DataFrame.from_dict({'verb': args.mapping_act2v.values(), 'noun': args.mapping_act2n.values()})
num_clips_at_val = args.num_clips
args.num_clips = 1
train_dataset = datasets.get_downstream_dataset(
train_transform, tokenizer, args, subset='train', label_mapping=mapping_vn2act,
)
args.num_clips = num_clips_at_val
val_dataset = datasets.get_downstream_dataset(
val_transform, tokenizer, args, subset='val', label_mapping=mapping_vn2act,
)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_sampler = torch.utils.data.SequentialSampler(val_dataset) # disable distributed
else:
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True
)
print('len(train_loader) = {}'.format(len(train_loader)))
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=(val_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=val_sampler, drop_last=False
)
print('len(val_loader) = {}'.format(len(val_loader)))
if args.evaluate:
if args.use_vn_classifier:
val_stats = validate_multihead(val_loader, model, args)
else:
val_stats = validate(val_loader, model, args)
return
if args.fix_lr:
lr_schedule = None
else:
lr_schedule = cosine_scheduler(
args.lr, args.lr_end, args.epochs, len(train_loader) // args.update_freq,
warmup_epochs=args.warmup_epochs, start_warmup_value=args.lr_start,
)
if dist_utils.is_main_process() and args.wandb:
wandb_id = os.path.split(args.output_dir)[-1]
wandb.init(project='LaViLa', id=wandb_id, config=args, resume='allow')
print(args)
best_metric = 0.
print("=> beginning training")
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_stats = train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args)
is_epoch = ((epoch + 1) % args.save_freq) == 0
print('=> saving checkpoint')
dist_utils.save_on_master({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
'best_acc1': 0,
'args': args,
}, False, args.output_dir, is_epoch=is_epoch)
if ((epoch + 1) % args.eval_freq) == 0:
if args.use_vn_classifier:
val_stats = validate_multihead(val_loader, model, args)
else:
val_stats = validate(val_loader, model, args)
if val_stats['acc1'] > best_metric:
is_best = True
best_metric = val_stats['acc1']
else:
is_best = False
print('=> saving checkpoint')
dist_utils.save_on_master({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
'best_acc1': best_metric,
'args': args,
}, is_best, args.output_dir, is_epoch=is_epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in val_stats.items()},
'epoch': epoch}
if dist_utils.is_main_process():
if args.wandb:
wandb.log(log_stats)
with open(os.path.join(args.output_dir, 'log.txt'), 'a') as f:
f.write(json.dumps(log_stats) + '\n')
def train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
mem = AverageMeter('Mem (GB)', ':6.1f')
iters_per_epoch = len(train_loader) // args.update_freq
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
top1_noun = AverageMeter('Noun Acc@1', ':6.2f')
top1_verb = AverageMeter('Verb Acc@1', ':6.2f')
progress = ProgressMeter(
iters_per_epoch,
[batch_time, data_time, mem, losses, top1, top5, top1_noun, top1_verb],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for data_iter, (images, target) in enumerate(train_loader):
optim_iter = data_iter // args.update_freq
# measure data loading time
data_time.update(time.time() - end)
# update weight decay and learning rate according to their schedule
it = iters_per_epoch * epoch + optim_iter # global training iteration
for k, param_group in enumerate(optimizer.param_groups):
if lr_schedule is not None:
param_group['lr'] = lr_schedule[it] * args.lr_multiplier_on_backbone
else:
param_group['lr'] = lr_schedule[it]
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
with amp.autocast(enabled=not args.disable_amp):
output = model(images, use_checkpoint=args.use_checkpoint)
if isinstance(output, list):
assert len(output) == 3
target_to_verb = torch.tensor([args.mapping_act2v[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
loss = criterion(output[0], target_to_verb)
target_to_noun = torch.tensor([args.mapping_act2n[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
loss += criterion(output[1], target_to_noun)
loss += criterion(output[2], target)
else:
loss = criterion(output, target)
loss /= args.update_freq
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()))
sys.exit(1)
scaler.scale(loss).backward()
if (data_iter + 1) % args.update_freq != 0:
continue
if args.clip_grad_value is not None:
scaler.unscale_(optimizer)
if args.clip_grad_type == 'norm':
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.clip_grad_value, norm_type=2.
)
elif args.clip_grad_type == 'value':
torch.nn.utils.clip_grad_value_(model.parameters(), args.clip_grad_value)
else:
assert False, f"Unknown clip mode ({args.clip_grad_type})."
# compute gradient and do SGD step
scaler.step(optimizer)
scaler.update()
model.zero_grad(set_to_none=True)
if isinstance(output, list):
target_to_verb = torch.tensor([args.mapping_act2v[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
acc1_verb, _ = accuracy(output[0], target_to_verb, topk=(1, 5))
top1_verb.update(acc1_verb.item(), images.size(0))
target_to_noun = torch.tensor([args.mapping_act2n[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
acc1_noun, _ = accuracy(output[1], target_to_noun, topk=(1, 5))
top1_noun.update(acc1_noun.item(), images.size(0))
acc1, acc5 = accuracy(output[2], target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
else:
output = torch.softmax(output, dim=1)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
if args.dataset == 'ek100_cls':
vi = get_marginal_indexes(args.actions, 'verb')
ni = get_marginal_indexes(args.actions, 'noun')
verb_scores = torch.tensor(marginalize(output.detach().cpu().numpy(), vi)).cuda(args.gpu, non_blocking=True)
noun_scores = torch.tensor(marginalize(output.detach().cpu().numpy(), ni)).cuda(args.gpu, non_blocking=True)
target_to_verb = torch.tensor([args.mapping_act2v[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
target_to_noun = torch.tensor([args.mapping_act2n[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
acc1_verb, _ = accuracy(verb_scores, target_to_verb, topk=(1, 5))
acc1_noun, _ = accuracy(noun_scores, target_to_noun, topk=(1, 5))
top1_verb.update(acc1_verb.item(), images.size(0))
top1_noun.update(acc1_noun.item(), images.size(0))
else:
top1_verb.update(0., images.size(0))
top1_noun.update(0., images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if optim_iter % args.print_freq == 0:
if dist_utils.is_main_process() and args.wandb:
wandb.log({
'acc1': top1.avg, 'acc5': top5.avg, 'loss': losses.avg,
'acc1_verb': top1_verb.avg, 'acc1_noun': top1_noun.avg,
})
progress.display(optim_iter)
progress.synchronize()
return {
'acc1': top1.avg, 'acc5': top5.avg, 'loss': losses.avg,
'acc1_verb': top1_verb.avg, 'acc1_noun': top1_noun.avg,
'lr': optimizer.param_groups[0]['lr'],
}
def validate(val_loader, model, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, top1, top5],
prefix='Test: '
)
# switch to eval mode
model.eval()
if args.use_half:
model.half()
all_outputs = []
all_targets = []
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
if isinstance(images, list):
logit_allcrops = []
for crop in images:
crop = crop.cuda(args.gpu, non_blocking=True)
if args.use_half:
crop = crop.half()
logit = model(crop, use_checkpoint=args.use_checkpoint)
logit_allcrops.append(logit)
logit_allcrops = torch.stack(logit_allcrops, 0)
logit = logit_allcrops.mean(0)
logit = torch.softmax(logit, dim=1)
target = target.cuda(args.gpu, non_blocking=True)
acc1, acc5 = accuracy(logit, target, topk=(1, 5))
top1.update(acc1.item(), target.size(0))
top5.update(acc5.item(), target.size(0))
else:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
if args.use_half:
images = images.half()
logit = model(images, use_checkpoint=args.use_checkpoint)
logit = torch.softmax(logit, dim=1)
acc1, acc5 = accuracy(logit, target, topk=(1, 5))
top1.update(acc1.item(), images.size(0))
top5.update(acc5.item(), images.size(0))
all_outputs.append(logit)
all_targets.append(target)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
progress.synchronize()
if args.dataset == 'ek100_cls':
print('EK100 * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
else:
print('EGTEA * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
all_outputs = torch.cat(all_outputs).cpu().numpy()
all_targets = torch.cat(all_targets).cpu().numpy()
cm = confusion_matrix(all_targets, all_outputs.argmax(axis=1))
mean_acc, acc = get_mean_accuracy(cm)
print('Mean Acc. = {:.3f}, Top-1 Acc. = {:.3f}'.format(mean_acc, acc))
if args.dataset == 'ek100_cls':
vi = get_marginal_indexes(args.actions, 'verb')
ni = get_marginal_indexes(args.actions, 'noun')
verb_scores = marginalize(all_outputs, vi)
noun_scores = marginalize(all_outputs, ni)
target_to_verb = np.array([args.mapping_act2v[a] for a in all_targets.tolist()])
target_to_noun = np.array([args.mapping_act2n[a] for a in all_targets.tolist()])
cm = confusion_matrix(target_to_verb, verb_scores.argmax(axis=1))
_, acc = get_mean_accuracy(cm)
print('Verb Acc@1: {:.3f}'.format(acc))
cm = confusion_matrix(target_to_noun, noun_scores.argmax(axis=1))
_, acc = get_mean_accuracy(cm)
print('Noun Acc@1: {:.3f}'.format(acc))
return {'acc1': top1.avg, 'acc5': top5.avg, 'mean_acc': mean_acc}
def validate_multihead(val_loader, model, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
top1_verb = AverageMeter('Verb Acc@1', ':6.2f')
top1_noun = AverageMeter('Noun Acc@1', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, top1, top5, top1_verb, top1_noun],
prefix='Test: '
)
# switch to eval mode
model.eval()
if args.use_half:
model.half()
all_verb_outputs = []
all_noun_outputs = []
all_action_outputs = []
all_verb_targets = []
all_noun_targets = []
all_action_targets = []
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
if isinstance(images, torch.Tensor):
images = [images, ]
logit_verb_allcrops = []
logit_noun_allcrops = []
logit_action_allcrops = []
for crop in images:
crop = crop.cuda(args.gpu, non_blocking=True)
if args.use_half:
crop = crop.half()
logit = model(crop, use_checkpoint=args.use_checkpoint)
logit_verb_allcrops.append(logit[0])
logit_noun_allcrops.append(logit[1])
logit_action_allcrops.append(logit[2])
logit_verb_allcrops = torch.stack(logit_verb_allcrops, 0)
logit_noun_allcrops = torch.stack(logit_noun_allcrops, 0)
logit_action_allcrops = torch.stack(logit_action_allcrops, 0)
logit_verb = logit_verb_allcrops.mean(0)
logit_noun = logit_noun_allcrops.mean(0)
logit_action = logit_action_allcrops.mean(0)
logit_noun = torch.softmax(logit_noun, dim=1)
logit_verb = torch.softmax(logit_verb, dim=1)
logit_action = torch.softmax(logit_action, dim=1)
target = target.cuda(args.gpu, non_blocking=True)
target_to_verb = torch.tensor([args.mapping_act2v[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
target_to_noun = torch.tensor([args.mapping_act2n[a] for a in target.tolist()]).cuda(args.gpu, non_blocking=True)
acc1, acc5 = accuracy(logit_action, target, topk=(1, 5))
acc1_verb, _ = accuracy(logit_verb, target_to_verb, topk=(1, 5))
acc1_noun, _ = accuracy(logit_noun, target_to_noun, topk=(1, 5))
top1.update(acc1.item(), target.size(0))
top5.update(acc5.item(), target.size(0))
top1_verb.update(acc1_verb.item(), target_to_verb.size(0))
top1_noun.update(acc1_noun.item(), target_to_noun.size(0))
all_verb_outputs.append(logit_verb)
all_noun_outputs.append(logit_noun)
all_action_outputs.append(logit_action)
all_verb_targets.append(target_to_verb)
all_noun_targets.append(target_to_noun)
all_action_targets.append(target)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
progress.synchronize()
print('EK100 * Verb Acc@1 {top1.avg:.3f}'.format(top1=top1_verb))
print('EK100 * Noun Acc@1 {top1.avg:.3f}'.format(top1=top1_noun))
print('EK100 * Action Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
return {'acc1': top1.avg, 'acc5': top5.avg, 'acc1_verb': top1_verb.avg, 'acc1_noun': top1_noun.avg}
if __name__ == '__main__':
parser = argparse.ArgumentParser('lavila finetune and evaluation', parents=[get_args_parser()])
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
main(args)
|