Spaces:
Runtime error
Runtime error
File size: 13,526 Bytes
66a6dc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
import sys
import csv
import glob
import torch
import random
from tqdm import tqdm
from typing import List, Any
from deepafx_st.data.audio import AudioFile
import deepafx_st.utils as utils
import deepafx_st.data.augmentations as augmentations
class AudioDataset(torch.utils.data.Dataset):
"""Audio dataset which returns an input and target file.
Args:
audio_dir (str): Path to the top level of the audio dataset.
input_dir (List[str], optional): List of paths to the directories containing input audio files. Default: ["clean"]
subset (str, optional): Dataset subset. One of ["train", "val", "test"]. Default: "train"
length (int, optional): Number of samples to load for each example. Default: 65536
train_frac (float, optional): Fraction of the files to use for training subset. Default: 0.8
val_frac (float, optional): Fraction of the files to use for validation subset. Default: 0.1
buffer_size_gb (float, optional): Size of audio to read into RAM in GB at any given time. Default: 10.0
Note: This is the buffer size PER DataLoader worker. So total RAM = buffer_size_gb * num_workers
buffer_reload_rate (int, optional): Number of items to generate before loading next chunk of dataset. Default: 10000
half (bool, optional): Sotre audio samples as float 16. Default: False
num_examples_per_epoch (int, optional): Define an epoch as certain number of audio examples. Default: 10000
random_scale_input (bool, optional): Apply random gain scaling to input utterances. Default: False
random_scale_target (bool, optional): Apply same random gain scaling to target utterances. Default: False
augmentations (dict, optional): List of augmentation types to apply to inputs. Default: []
freq_corrupt (bool, optional): Apply bad EQ filters. Default: False
drc_corrupt (bool, optional): Apply an expander to corrupt dynamic range. Default: False
ext (str, optional): Expected audio file extension. Default: "wav"
"""
def __init__(
self,
audio_dir,
input_dirs: List[str] = ["cleanraw"],
subset: str = "train",
length: int = 65536,
train_frac: float = 0.8,
val_per: float = 0.1,
buffer_size_gb: float = 1.0,
buffer_reload_rate: float = 1000,
half: bool = False,
num_examples_per_epoch: int = 10000,
random_scale_input: bool = False,
random_scale_target: bool = False,
augmentations: dict = {},
freq_corrupt: bool = False,
drc_corrupt: bool = False,
ext: str = "wav",
):
super().__init__()
self.audio_dir = audio_dir
self.dataset_name = os.path.basename(audio_dir)
self.input_dirs = input_dirs
self.subset = subset
self.length = length
self.train_frac = train_frac
self.val_per = val_per
self.buffer_size_gb = buffer_size_gb
self.buffer_reload_rate = buffer_reload_rate
self.half = half
self.num_examples_per_epoch = num_examples_per_epoch
self.random_scale_input = random_scale_input
self.random_scale_target = random_scale_target
self.augmentations = augmentations
self.freq_corrupt = freq_corrupt
self.drc_corrupt = drc_corrupt
self.ext = ext
self.input_filepaths = []
for input_dir in input_dirs:
search_path = os.path.join(audio_dir, input_dir, f"*.{ext}")
self.input_filepaths += glob.glob(search_path)
self.input_filepaths = sorted(self.input_filepaths)
# create dataset split based on subset
self.input_filepaths = utils.split_dataset(
self.input_filepaths,
subset,
train_frac,
)
# get details about input audio files
input_files = {}
input_dur_frames = 0
for input_filepath in tqdm(self.input_filepaths, ncols=80):
file_id = os.path.basename(input_filepath)
audio_file = AudioFile(
input_filepath,
preload=False,
half=half,
)
if audio_file.num_frames < (self.length * 2):
continue
input_files[file_id] = audio_file
input_dur_frames += input_files[file_id].num_frames
if len(list(input_files.items())) < 1:
raise RuntimeError(f"No files found in {search_path}.")
input_dur_hr = (input_dur_frames / input_files[file_id].sample_rate) / 3600
print(
f"\nLoaded {len(input_files)} files for {subset} = {input_dur_hr:0.2f} hours."
)
self.sample_rate = input_files[file_id].sample_rate
# save a csv file with details about the train and test split
splits_dir = os.path.join("configs", "splits")
if not os.path.isdir(splits_dir):
os.makedirs(splits_dir)
csv_filepath = os.path.join(splits_dir, f"{self.dataset_name}_{self.subset}_set.csv")
with open(csv_filepath, "w") as fp:
dw = csv.DictWriter(fp, ["file_id", "filepath", "type", "subset"])
dw.writeheader()
for input_filepath in self.input_filepaths:
dw.writerow(
{
"file_id": self.get_file_id(input_filepath),
"filepath": input_filepath,
"type": "input",
"subset": self.subset,
}
)
# some setup for iteratble loading of the dataset into RAM
self.items_since_load = self.buffer_reload_rate
def __len__(self):
return self.num_examples_per_epoch
def load_audio_buffer(self):
self.input_files_loaded = {} # clear audio buffer
self.items_since_load = 0 # reset iteration counter
nbytes_loaded = 0 # counter for data in RAM
# different subset in each
random.shuffle(self.input_filepaths)
# load files into RAM
for input_filepath in self.input_filepaths:
file_id = os.path.basename(input_filepath)
audio_file = AudioFile(
input_filepath,
preload=True,
half=self.half,
)
if audio_file.num_frames < (self.length * 2):
continue
self.input_files_loaded[file_id] = audio_file
nbytes = audio_file.audio.element_size() * audio_file.audio.nelement()
nbytes_loaded += nbytes
# check the size of loaded data
if nbytes_loaded > self.buffer_size_gb * 1e9:
break
def generate_pair(self):
# ------------------------ Input audio ----------------------
rand_input_file_id = None
input_file = None
start_idx = None
stop_idx = None
while True:
rand_input_file_id = self.get_random_file_id(self.input_files_loaded.keys())
# use this random key to retrieve an input file
input_file = self.input_files_loaded[rand_input_file_id]
# load the audio data if needed
if not input_file.loaded:
raise RuntimeError("Audio not loaded.")
# get a random patch of size `self.length` x 2
start_idx, stop_idx = self.get_random_patch(
input_file, int(self.length * 2)
)
if start_idx >= 0:
break
input_audio = input_file.audio[:, start_idx:stop_idx].clone().detach()
input_audio = input_audio.view(1, -1)
if self.half:
input_audio = input_audio.float()
# peak normalize to -12 dBFS
input_audio /= input_audio.abs().max()
input_audio *= 10 ** (-12.0 / 20) # with min 3 dBFS headroom
if len(list(self.augmentations.items())) > 0:
if torch.rand(1).sum() < 0.5:
input_audio_aug = augmentations.apply(
[input_audio],
self.sample_rate,
self.augmentations,
)[0]
else:
input_audio_aug = input_audio.clone()
else:
input_audio_aug = input_audio.clone()
input_audio_corrupt = input_audio_aug.clone()
# apply frequency and dynamic range corrpution (expander)
if self.freq_corrupt and torch.rand(1).sum() < 0.75:
input_audio_corrupt = augmentations.frequency_corruption(
[input_audio_corrupt], self.sample_rate
)[0]
# peak normalize again before passing through dynamic range expander
input_audio_corrupt /= input_audio_corrupt.abs().max()
input_audio_corrupt *= 10 ** (-12.0 / 20) # with min 3 dBFS headroom
if self.drc_corrupt and torch.rand(1).sum() < 0.10:
input_audio_corrupt = augmentations.dynamic_range_corruption(
[input_audio_corrupt], self.sample_rate
)[0]
# ------------------------ Target audio ----------------------
# use the same augmented audio clip, add different random EQ and compressor
target_audio_corrupt = input_audio_aug.clone()
# apply frequency and dynamic range corrpution (expander)
if self.freq_corrupt and torch.rand(1).sum() < 0.75:
target_audio_corrupt = augmentations.frequency_corruption(
[target_audio_corrupt], self.sample_rate
)[0]
# peak normalize again before passing through dynamic range compressor
input_audio_corrupt /= input_audio_corrupt.abs().max()
input_audio_corrupt *= 10 ** (-12.0 / 20) # with min 3 dBFS headroom
if self.drc_corrupt and torch.rand(1).sum() < 0.75:
target_audio_corrupt = augmentations.dynamic_range_compression(
[target_audio_corrupt], self.sample_rate
)[0]
return input_audio_corrupt, target_audio_corrupt
def __getitem__(self, _):
""" """
# increment counter
self.items_since_load += 1
# load next chunk into buffer if needed
if self.items_since_load > self.buffer_reload_rate:
self.load_audio_buffer()
# generate pairs for style training
input_audio, target_audio = self.generate_pair()
# ------------------------ Conform length of files -------------------
input_audio = utils.conform_length(input_audio, int(self.length * 2))
target_audio = utils.conform_length(target_audio, int(self.length * 2))
# ------------------------ Apply fade in and fade out -------------------
input_audio = utils.linear_fade(input_audio, sample_rate=self.sample_rate)
target_audio = utils.linear_fade(target_audio, sample_rate=self.sample_rate)
# ------------------------ Final normalizeation ----------------------
# always peak normalize final input to -12 dBFS
input_audio /= input_audio.abs().max()
input_audio *= 10 ** (-12.0 / 20.0)
# always peak normalize the target to -12 dBFS
target_audio /= target_audio.abs().max()
target_audio *= 10 ** (-12.0 / 20.0)
return input_audio, target_audio
@staticmethod
def get_random_file_id(keys):
# generate a random index into the keys of the input files
rand_input_idx = torch.randint(0, len(keys) - 1, [1])[0]
# find the key (file_id) correponding to the random index
rand_input_file_id = list(keys)[rand_input_idx]
return rand_input_file_id
@staticmethod
def get_random_patch(audio_file, length, check_silence=True):
silent = True
count = 0
while silent:
count += 1
start_idx = torch.randint(0, audio_file.num_frames - length - 1, [1])[0]
# int(torch.rand(1) * (audio_file.num_frames - length))
stop_idx = start_idx + length
patch = audio_file.audio[:, start_idx:stop_idx].clone().detach()
length = patch.shape[-1]
first_patch = patch[..., : length // 2]
second_patch = patch[..., length // 2 :]
if (
(first_patch**2).mean() > 1e-5 and (second_patch**2).mean() > 1e-5
) or not check_silence:
silent = False
if count > 100:
print("get_random_patch count", count)
return -1, -1
# break
return start_idx, stop_idx
def get_file_id(self, filepath):
"""Given a filepath extract the DAPS file id.
Args:
filepath (str): Path to an audio files in the DAPS dataset.
Returns:
file_id (str): DAPS file id of the form <participant_id>_<script_id>
file_set (str): The DAPS set to which the file belongs.
"""
file_id = os.path.basename(filepath).split("_")[:2]
file_id = "_".join(file_id)
return file_id
def get_file_set(self, filepath):
"""Given a filepath extract the DAPS file set name.
Args:
filepath (str): Path to an audio files in the DAPS dataset.
Returns:
file_set (str): The DAPS set to which the file belongs.
"""
file_set = os.path.basename(filepath).split("_")[2:]
file_set = "_".join(file_set)
file_set = file_set.replace(f".{self.ext}", "")
return file_set
|