Spaces:
Sleeping
Sleeping
File size: 6,528 Bytes
02be4dc c63233e 02be4dc 6f2b708 02be4dc 5abd884 02be4dc 5abd884 02be4dc 0c6044d 02be4dc 0c6044d 02be4dc 8d9fbc8 02be4dc 0c6044d 02be4dc 0c6044d 02be4dc 0c6044d 02be4dc 0c6044d 5abd884 0c6044d 5abd884 0c6044d 4cf7ecf 0c6044d 4cf7ecf 0c6044d 5abd884 0c6044d 5abd884 8d9fbc8 5abd884 8d9fbc8 5abd884 0c6044d 5abd884 8d9fbc8 5abd884 8d9fbc8 5abd884 8d9fbc8 5abd884 8d9fbc8 5abd884 02be4dc 0c6044d 02be4dc 5abd884 02be4dc 6f2b708 02be4dc 0c6044d 5abd884 3036563 5abd884 02be4dc 5abd884 3036563 5abd884 0c6044d 5abd884 02be4dc 5abd884 3036563 5abd884 0c6044d 02be4dc 5abd884 0c6044d 5abd884 0c6044d 5abd884 0c6044d 5abd884 8a01e9c 5abd884 02be4dc 0c6044d 38565c8 5abd884 02be4dc 0c6044d 02be4dc 5abd884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# app dashboard from https://huggingface.co/spaces/davanstrien/argilla-progress/blob/main/app.py
import os
from typing import List
import argilla as rg
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
client = rg.Argilla(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY"),
)
def get_progress(dataset: rg.Dataset) -> dict:
dataset_progress = dataset.progress(with_users_distribution=True)
total, completed = dataset_progress["total"], dataset_progress["completed"]
progress = (completed / total) * 100 if total > 0 else 0
return {
"total": total,
"annotated": completed,
"progress": progress,
"users": {
username: user_progress["completed"].get("submitted") + user_progress["pending"].get("submitted")
for username, user_progress in dataset_progress["users"].items()
}
}
def create_progress_bar(progress):
top_labels = ['Completed', 'Pending']
colors = ['rgba(38, 24, 74, 0.8)', 'rgba(190, 192, 213, 1)']
x_data = [[progress["annotated"], progress["total"] - progress["annotated"]]]
y_data = ['Progress']
fig = go.Figure()
for i in range(0, len(x_data[0])):
for xd, yd in zip(x_data, y_data):
fig.add_trace(go.Bar(
x=[xd[i]], y=[yd],
orientation='h',
marker=dict(
color=colors[i],
line=dict(color='rgb(248, 248, 249)', width=1)
),
hoverinfo='text',
hovertext=f"{top_labels[i]} records: {xd[i]}"
))
fig.update_layout(
xaxis=dict(
showgrid=False,
showline=False,
showticklabels=False,
zeroline=False,
domain=[0.15, 1]
),
yaxis=dict(
showgrid=False,
showline=False,
showticklabels=False,
zeroline=False,
domain=[0.15, 0.5]
),
barmode='stack',
paper_bgcolor='rgb(248, 248, 255)',
plot_bgcolor='rgb(248, 248, 255)',
margin=dict(l=120, r=10, t=140, b=80),
showlegend=False
)
annotations = []
for yd, xd in zip(y_data, x_data):
# labeling the y-axis
annotations.append(dict(xref='paper', yref='y',
x=0.14, y=yd,
xanchor='right',
text=str(yd),
font=dict(family='Arial', size=14,
color='rgb(67, 67, 67)'),
showarrow=False, align='right'))
# labeling the first percentage of each bar (x_axis)
if xd[0] > 0:
annotations.append(dict(xref='x', yref='y',
x=xd[0] / 2, y=yd,
text=str(xd[0]),
font=dict(family='Arial', size=14,
color='rgb(248, 248, 255)'),
showarrow=False))
space = xd[0]
for i in range(1, len(xd)):
if xd[i] > 0:
# labeling the rest of percentages for each bar (x_axis)
annotations.append(dict(xref='x', yref='y',
x=space + (xd[i]/2), y=yd,
text=str(xd[i]),
font=dict(family='Arial', size=14,
color='rgb(248, 248, 255)'),
showarrow=False))
space += xd[i]
fig.update_layout(annotations=annotations, height=80)
return fig
def create_piechart(user_annotations):
sorted_users = sorted(user_annotations.items(), key=lambda x: x[1], reverse=True)
labels, values = [], []
for user, contribution in sorted_users:
labels.append(user)
values.append(contribution)
fig = go.Figure(
go.Pie(
labels=labels,
values=values
)
)
fig.update_layout(
title_text="User contributions",
height=500,
margin=dict(l=10, r=10, t=50, b=10),
template="ggplot2"
)
fig.update_traces(textposition='inside', textinfo='percent+label')
return fig
def get_datasets(client: rg.Argilla) -> List[rg.Dataset]:
return client.datasets.list()
datasets = get_datasets(client)
from typing import Optional
def update_dashboard(dataset_idx: Optional[int] = None):
if dataset_idx is None:
return [None, None, None]
dataset = datasets[dataset_idx]
progress = get_progress(dataset)
progress_bar = create_progress_bar(progress)
piechart = create_piechart(progress["users"])
leaderboard_df = pd.DataFrame(
list(progress["users"].items()), columns=["User", "Submitted records"]
)
leaderboard_df = leaderboard_df.sort_values(
"Submitted records", ascending=False
).reset_index(drop=True)
return progress_bar, piechart, leaderboard_df
with gr.Blocks() as demo:
gr.Markdown("# Argilla Progress Dashboard")
dataset_choices = [(dataset.name, idx) for idx, dataset in enumerate(datasets)]
datasets_dropdown = gr.Dropdown(
choices=dataset_choices,
label="Select your dataset",
value=0,
visible=True
)
def set_selected_dataset(dataset_idx) -> None:
global selected_dataset
dataset = datasets[dataset_idx]
selected_dataset = dataset
with gr.Row():
progress_bar_output = gr.Plot(label="Overall Progress")
gr.Markdown("## Contributor Leaderboard")
with gr.Row():
leaderboard_output = gr.Dataframe(
headers=["User", "Submitted records"]
)
piechart_output = gr.Plot(label="User contributions")
demo.load(
update_dashboard,
inputs=[datasets_dropdown],
outputs=[progress_bar_output, piechart_output, leaderboard_output],
)
demo.load(
update_dashboard,
inputs=[datasets_dropdown],
outputs=[progress_bar_output, piechart_output, leaderboard_output],
every=15,
)
datasets_dropdown.change(
update_dashboard,
inputs=[datasets_dropdown],
outputs=[progress_bar_output, piechart_output, leaderboard_output],
)
if __name__ == "__main__":
demo.launch()
|