Spaces:
Sleeping
Sleeping
File size: 7,075 Bytes
1997c01 d189e4c 1997c01 6866b1f f83432c d8e3d53 83cd13d cded988 d8e3d53 83cd13d 81225f7 d8e3d53 0b6419d d8e3d53 0b6419d d8e3d53 c024d74 e517d5e f83432c e517d5e 68e8a9a d8e3d53 cba8adc 83cd13d 68e8a9a 3b7be5c 68e8a9a cba8adc c024d74 68e8a9a f83432c a07c0ed f83432c b65f10f f83432c 1997c01 f83432c a07c0ed f83432c 1997c01 a07c0ed 1997c01 83cd13d 19ae57e 1997c01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
import pandas as pd
import numpy as np
import json
from io import StringIO
from collections import OrderedDict
def test(input_json):
print("Received input")
# Parse the input JSON string
try:
inputs = json.loads(input_json)
except json.JSONDecodeError:
inputs = json.loads(input_json.replace("'", '"'))
# Accessing the lists
ids_index = inputs['input']['ids_list']
weightsNames = inputs['input']["weights_names"]
# Extract the datatree part which is a list of dictionaries
matrix = inputs['input']["matrix"]
weights = inputs['input']["weights"]
alpha = inputs['input']["alpha"]
alpha = float(alpha)
threshold = inputs['input']["threshold"]
threshold = float(threshold)
df_matrix = pd.DataFrame(matrix).T
df_weights = pd.DataFrame(weights).T
df_matrix = df_matrix.round(0).astype(int)
df_weights = df_weights.round(0).astype(int)
def computeAccessibility (DistanceMatrix,weightsNames, destinationWeights=None,alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=weightsNames) #destinationWeights.columns)
# for weighted accessibility (e. g. areas)
if not destinationWeights.empty:
for col,columnName in zip(destinationWeights.columns, weightsNames):
subdomainsAccessibility[columnName] = (decay_factors * destinationWeights[col].values).sum(axis=1)
# for unweighted accessibility (e. g. points of interest)
else:
for columnName in weightsNames:
subdomainsAccessibility[columnName] = (decay_factors * 1).sum(axis=1)
return subdomainsAccessibility
subdomainsAccessibility = computeAccessibility(df_matrix,weightsNames,df_weights,alpha,threshold)
# make a dictionary to output in grasshopper / etc
subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index')
def remap(value, B_min, B_max, C_min, C_max):
return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))
def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict):
"""
Converts accessibility measures into livability scores for various urban subdomains
using a specified scaling mechanism based on predefined thresholds and maximum points.
This function takes a DataFrame of total accessibility per subdomain and remaps these values
into livability scores based on thresholds and maximum scores provided in a dictionary.
The output DataFrame retains the original order of indices from a reference distance matrix.
New columns for combined values such as 'social infrastructure' and 'transportation' are added,
aggregating scores from relevant subdomains.
Parameters:
- DistanceMatrix (pd.DataFrame): DataFrame used to maintain the order of indices.
- totalAccessibility (pd.DataFrame): DataFrame containing accessibility scores for various subdomains.
- SubdomainAttributeDict (dict): Dictionary where each key is a subdomain and each value is a list
where the first element is the minimum threshold for good accessibility, and the second element is
the maximum livability score for that threshold.
Returns:
- pd.DataFrame: A new DataFrame with the same indices as DistanceMatrix and columns corresponding to
totalAccessibility, enhanced with additional columns for combined livability metrics.
The function processes each subdomain defined in SubdomainAttributeDict. If the accessibility in a
subdomain exceeds the threshold, the maximum livability score is assigned. Otherwise, a livability
score is calculated based on linear interpolation between 0 and the threshold. Combined metrics
for broader categories like 'social infrastructure' are computed by summing up relevant subdomain
scores.
Example:
--------
# Define the DistanceMatrix and totalAccessibility with example data
DistanceMatrix = pd.DataFrame(index=[0, 1, 2])
totalAccessibility = pd.DataFrame({'jobs': [100, 150, 200], 'health': [80, 90, 95]}, index=[0, 1, 2])
SubdomainAttributeDict = {'jobs': [100, 50], 'health': [80, 40]}
# Call the function
livability_scores = accessibilityToLivability(DistanceMatrix, totalAccessibility, SubdomainAttributeDict)
print(livability_scores)
Notes:
------
- The function assumes all columns in totalAccessibility are represented in SubdomainAttributeDict unless
explicitly handled otherwise within the function.
"""
livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns)
# livability["Workplaces"] = 0
livability.fillna(0, inplace=True)
# find a set of unique domains, to which subdomains are aggregated
temp = []
for key, values in SubdomainAttributeDict.items():
domain = SubdomainAttributeDict[key]['domain']
for item in domain:
if ',' in item:
domain_list = item.split(',')
SubdomainAttributeDict[key]['domain'] = domain_list
for domain in domain_list:
temp.append(domain)
else:
if item != 0:
temp.append(item)
domainsUnique = list(set(temp))
for domain in domainsUnique:
livability[domain] = 0
# remap accessibility to livability points
for key, values in SubdomainAttributeDict.items():
threshold = float(SubdomainAttributeDict[key]['thresholds'])
max_livability = float(SubdomainAttributeDict[key]['max_points'])
domain = SubdomainAttributeDict[key]['domain']
sqm_per_employee = str(SubdomainAttributeDict[key]['sqmPerEmpl'])
if key in subdomainsAccessibility.columns:
livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability)
livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability
livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score
if any(domain):
for item in domain:
livability.loc[subdomainsAccessibility[key] >= threshold, domain] += max_livability
livability.loc[subdomainsAccessibility[key] < threshold, domain] += livability_score
return livability
# Prepare the output
output = {
"subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary
}
return json.dumps(output)
# Define the Gradio interface with a single JSON input
iface = gr.Interface(
fn=test,
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."),
outputs=gr.JSON(label="Output JSON"),
title="testspace"
)
iface.launch() |