Spaces:
Sleeping
Sleeping
File size: 17,910 Bytes
eda0b1c 4508e72 eda0b1c c5b678e eda0b1c 9670947 640f9c6 eda0b1c 2e84e69 e07f8da cbbdd13 eda0b1c 0a00112 166b945 fda2c77 166b945 b06d934 166b945 b06d934 166b945 f69761c 166b945 63a0234 0f28441 c7a9ea2 63a0234 166b945 63a0234 166b945 30304df 166b945 83b2547 166b945 f69761c 166b945 962d621 166b945 2e84e69 29f0d25 2e84e69 29f0d25 2e84e69 7da3f75 2e84e69 7901797 2e84e69 8da1c2e 83cab62 eda0b1c cc63a78 9d78ab1 b224536 9d78ab1 4c009bd 9d78ab1 07ba2d7 9d78ab1 3dea01b 9d78ab1 4c009bd 9d78ab1 07ba2d7 9d78ab1 3dea01b 9d78ab1 4c009bd 9d78ab1 4c009bd 9d78ab1 4c009bd 3cc6a9a 9d78ab1 4c009bd 3cc6a9a 9d78ab1 cc63a78 a68aa72 77e01dc e1ff7af 79bcc66 e1ff7af a68aa72 df92571 521213c df92571 87f9d6f 521213c a68aa72 a173230 d4666b7 a5fefb6 d4666b7 31c3bf8 d4666b7 a173230 a68aa72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import sys
from specklepy.api.client import SpeckleClient
from specklepy.api.credentials import get_default_account, get_local_accounts
from specklepy.transports.server import ServerTransport
from specklepy.api import operations
from specklepy.objects.geometry import Polyline, Point
from specklepy.objects import Base
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
import matplotlib
import json
from notion_client import Client
import os
from config import landuseColumnName
from config import subdomainColumnName
from config import sqmPerEmployeeColumnName
from config import thresholdsColumnName
from config import maxPointsColumnName
from config import domainColumnName
from config import landuseDatabaseId , streamId, dmBranchName, dmCommitId, luBranchName, luCommitId
import speckle_utils
import data_utils
notionToken = os.getenv('notionToken')
speckleToken = os.getenv('speckleToken')
# ----------------------------------------------------------------------------------
# query full database
def fetch_all_database_pages(client, database_id):
"""
Fetches all pages from a specified Notion database.
:param client: Initialized Notion client.
:param database_id: The ID of the Notion database to query.
:return: A list containing all pages from the database.
"""
start_cursor = None
all_pages = []
while True:
response = client.databases.query(
**{
"database_id": database_id,
"start_cursor": start_cursor
}
)
all_pages.extend(response['results'])
# Check if there's more data to fetch
if response['has_more']:
start_cursor = response['next_cursor']
else:
break
return all_pages
def get_property_value(page, property_name):
"""
Extracts the value from a specific property in a Notion page based on its type.
:param page: The Notion page data as retrieved from the API.
:param property_name: The name of the property whose value is to be fetched.
:return: The value or values contained in the specified property, depending on type.
"""
# Check if the property exists in the page
if property_name not in page['properties']:
return None # or raise an error if you prefer
property_data = page['properties'][property_name]
prop_type = property_data['type']
# Handle 'title' and 'rich_text' types
if prop_type in ['title', 'rich_text']:
return ''.join(text_block['text']['content'] for text_block in property_data[prop_type])
# Handle 'number' type
elif prop_type == 'number':
return property_data[prop_type]
# Handle 'select' type
elif prop_type == 'select':
return property_data[prop_type]['name'] if property_data[prop_type] else None
# Handle 'multi_select' type
elif prop_type == 'multi_select':
return [option['name'] for option in property_data[prop_type]]
# Handle 'date' type
elif prop_type == 'date':
if property_data[prop_type]['end']:
return (property_data[prop_type]['start'], property_data[prop_type]['end'])
else:
return property_data[prop_type]['start']
# Handle 'relation' type
elif prop_type == 'relation':
return [relation['id'] for relation in property_data[prop_type]]
# Handle 'people' type
elif prop_type == 'people':
return [person['name'] for person in property_data[prop_type] if 'name' in person]
# Add more handlers as needed for other property types
else:
# Return None or raise an error for unsupported property types
return None
def get_page_by_id(notion_db_pages, page_id):
for pg in notion_db_pages:
if pg["id"] == page_id:
return pg
# --------------------------------------------------------------------------------------------- #
def getDataFromSpeckle(
speckleClient,
streamID,
matrixBranchName,
landuseBranchName,
matrixComitID="",
landuseComitID="",
pathToData = ["@Data", "@{0}"],
uuidColumn = "uuid",
landuseColumns="lu+"
):
if landuseBranchName:
streamLanduses = speckle_utils.getSpeckleStream(streamId,luBranchName,speckleClient, luCommitId)
streamData = streamLanduses["@Data"]["@{0}"]
dfLanduses = speckle_utils.get_dataframe(streamData, return_original_df=False)
dfLanduses = dfLanduses.set_index("uuid", drop=False) # variable, uuid as default
if type(landuseColumns) == type("s"):
# extract landuse columns with "landuseColumns"
landuse_columns = []
for name in dfLanduses.columns:
if name.startswith(landuseColumns):
landuse_columns.append(name)
elif type(landuseColumns) == type([]):
#assmuming the user provided a lsit of columns
landuse_columns = landuseColumns
dfLanduses_filtered = dfLanduses[landuse_columns]
dfLanduses_filtered.columns = [col.replace('lu+', '') for col in dfLanduses_filtered.columns]
if matrixBranchName:
streamObj = speckle_utils.getSpeckleStream(streamId,dmBranchName,speckleClient, dmCommitId)
matrices = {}
isDict = False
try:
data_part = streamObj["@Data"]["@{0}"]
for matrix in data_part:
# Find the matrix name
matrix_name = next((attr for attr in dir(matrix) if "matrix" in attr), None)
if not matrix_name:
continue
matrix_data = getattr(matrix, matrix_name)
originUUID = matrix_data["@originUUID"]
destinationUUID = matrix_data["@destinationUUID"]
processed_rows = []
for chunk in matrix_data["@chunks"]:
for row in chunk["@rows"]:
processed_rows.append(row["@row"])
matrix_array = np.array(processed_rows)
matrix_df = pd.DataFrame(matrix_array, index=originUUID, columns=destinationUUID)
matrices[matrix_name] = matrix_df
except KeyError:
data_part = streamObj["@Data"].__dict__
print(data_part.keys())
for k, v in data_part.items():
if "matrix" in k:
matrix_name = k
matrix_data = v
originUUID = matrix_data["@originUUID"]
destinationUUID = matrix_data["@destinationUUID"]
processed_rows = []
for chunk in matrix_data["@chunks"]:
for row in chunk["@rows"]:
processed_rows.append(row["@row"])
matrix_array = np.array(processed_rows)
matrix_df = pd.DataFrame(matrix_array, index=originUUID, columns=destinationUUID)
matrices[matrix_name] = matrix_df
return dfLanduses_filtered, matrices
def getDataFromNotion(
notion,
notionToken,
landuseDatabaseID,
subdomainDatabaseID,
landuseColumnName ="LANDUSE",
subdomainColumnName ="SUBDOMAIN_LIVABILITY",
sqmPerEmployeeColumnName = "SQM PER EMPL",
thresholdsColumnName="MANHATTAN THRESHOLD",
maxPointsColumnName = "LIVABILITY MAX POINT",
domainColumnName = "DOMAIN_LIVABILITY"
):
landuse_attributes = fetch_all_database_pages(notion, landuseDatabaseID)
livability_attributes = fetch_all_database_pages(notion, subdomainDatabaseID)
landuseMapperDict ={}
livabilityMapperDict ={}
for page in landuse_attributes:
value_landuse = get_property_value(page, landuseColumnName)
value_subdomain = get_property_value(page, subdomainColumnName)
origin = "false" if not get_property_value(page, "is_origin_mask") else get_property_value(page, "is_origin_mask")
if value_subdomain and value_landuse:
landuseMapperDict[value_landuse] = {
'subdomain livability': value_subdomain,
'is origin': origin
}
for page in livability_attributes:
subdomain = get_property_value(page, subdomainColumnName)
sqm_per_employee = get_property_value(page, sqmPerEmployeeColumnName)
thresholds = get_property_value(page, thresholdsColumnName)
max_points = get_property_value(page, maxPointsColumnName)
domain = get_property_value(page, domainColumnName)
if thresholds:
livabilityMapperDict[subdomain] = {
'sqmPerEmpl': sqm_per_employee if sqm_per_employee != "" else 0,
'thresholds': thresholds,
'max_points': max_points,
'domain': [domain if domain != "" else 0]
}
return landuseMapperDict, livabilityMapperDict
def getDataFromGrasshopper(
inputJson,
inputNameMatrix,
inputNameLanduse,
inputNameAttributeMapper,
inputNameLanduseMapper,
inputNameAlpha = "alpha",
inputNameThreshold = "threshold"
):
if inputNameMatrix is not None:
matrix = inputJson['input'][inputNameMatrix]
dfMatrix_gh = pd.DataFrame(matrix).T
dfMatrix_gh = dfMatrix_gh.apply(pd.to_numeric, errors='coerce')
dfMatrix_gh = dfMatrix_gh.replace([np.inf, -np.inf], 10000).fillna(0)
dfMatrix_gh = dfMatrix_gh.round(0).astype(int)
mask_connected = dfMatrix_gh.index.tolist()
else:
dfMatrix_gh = None
if inputNameLanduse is not None:
landuses = inputJson['input'][inputNameLanduse]
dfLanduses_gh = pd.DataFrame(landuses).T
dfLanduses_gh = dfLanduses_gh.apply(pd.to_numeric, errors='coerce')
dfLanduses_gh = dfLanduses_gh.replace([np.inf, -np.inf], 0).fillna(0) # cleaning function?
dfLanduses_gh = dfLanduses_gh.round(0).astype(int)
if dfMatrix_gh is not None:
valid_indexes = [idx for idx in mask_connected if idx in dfLanduses_gh.index]
# Identify and report missing indexes
missing_indexes = set(mask_connected) - set(valid_indexes)
if missing_indexes:
print(f"Error: The following indexes were not found in the DataFrame: {missing_indexes}, length: {len(missing_indexes)}")
# Apply the filtered mask
dfLanduses_gh = dfLanduses_gh.loc[valid_indexes]
else:
dfLanduses_gh = None
if inputNameAttributeMapper is not None:
attributeMapperDict_gh = inputJson['input'][inputNameAttributeMapper]
else:
attributeMapperDict_gh = None
if inputNameLanduseMapper is not None:
landuseMapperDict_gh = inputJson['input'][inputNameLanduseMapper]
else:
landuseMapperDict_gh = None
if inputNameAlpha is not None:
alpha = inputJson['input'][inputNameAlpha]
alpha = float(alpha)
if alpha is None:
alpha = alphaDefault
else:
alpha = alphaDefault
if inputNameThreshold is not None:
threshold = inputJson['input'][inputNameThreshold]
threshold = float(threshold)
if threshold is None:
threshold = thresholdDefault
else:
threshold = thresholdDefault
return dfMatrix_gh, dfLanduses_gh, attributeMapperDict_gh, landuseMapperDict_gh, alpha, threshold
def splitDictByStrFragmentInColumnName(original_dict, substrings):
result_dicts = {substring: {} for substring in substrings}
for key, nested_dict in original_dict.items():
for subkey, value in nested_dict.items():
for substring in substrings:
if substring in subkey:
if key not in result_dicts[substring]:
result_dicts[substring][key] = {}
result_dicts[substring][key][subkey] = value
return result_dicts
def landusesToSubdomains(DistanceMatrix, LanduseDf, LanduseToSubdomainDict, UniqueSubdomainsList):
df_LivabilitySubdomainsArea = pd.DataFrame(0, index=DistanceMatrix.index, columns=UniqueSubdomainsList)
for subdomain in UniqueSubdomainsList:
for lu, attributes in LanduseToSubdomainDict.items():
if attributes["subdomain livability"] == subdomain:
if lu in LanduseDf.columns:
if LanduseDf[lu].notna().any():
df_LivabilitySubdomainsArea[subdomain] = df_LivabilitySubdomainsArea[subdomain].add(LanduseDf[lu], fill_value=0)
else:
print(f"Warning: Column '{lu}' not found in landuse database")
return df_LivabilitySubdomainsArea
def FindWorkplacesNumber (DistanceMatrix,livabilityMapperDict,destinationWeights,UniqueSubdomainsList ):
df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
for subdomain in UniqueSubdomainsList:
for key, values in livabilityMapperDict.items():
if key and values['sqmPerEmpl']:
sqm_per_empl = float(livabilityMapperDict[subdomain]['sqmPerEmpl'])
if key in destinationWeights.columns and key == subdomain:
if sqm_per_empl > 0:
df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
else:
df_LivabilitySubdomainsWorkplaces['jobs'] += 0
else:
df_LivabilitySubdomainsWorkplaces['jobs'] += 0
return df_LivabilitySubdomainsWorkplaces
def computeAccessibility (DistanceMatrix, destinationWeights=None,alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
# for weighted accessibility (e. g. areas)
if destinationWeights is not None: #not destinationWeights.empty:
subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
for col in destinationWeights.columns:
subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
else:
print("Destination weights parameter is None")
return subdomainsAccessibility
def computeAccessibility_pointOfInterest (DistanceMatrix, columnName, alpha = 0.0038, threshold = 600):
decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
pointOfInterestAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=[columnName])
for col in pointOfInterestAccessibility.columns:
pointOfInterestAccessibility[col] = (decay_factors * 1).sum(axis=1)
return pointOfInterestAccessibility
def remap(value, B_min, B_max, C_min, C_max):
return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))
def accessibilityToLivability (DistanceMatrix,accessibilityInputs, SubdomainAttributeDict,UniqueDomainsList):
livability = pd.DataFrame(index=DistanceMatrix.index, columns=accessibilityInputs.columns)
for domain in UniqueDomainsList:
livability[domain] = 0
livability.fillna(0, inplace=True)
templist = []
# remap accessibility to livability points
for key, values in SubdomainAttributeDict.items():
threshold = float(SubdomainAttributeDict[key]['thresholds'])
max_livability = float(SubdomainAttributeDict[key]['max_points'])
domains = [str(item) for item in SubdomainAttributeDict[key]['domain']]
if key in accessibilityInputs.columns and key != 'commercial':
livability_score = remap(accessibilityInputs[key], 0, threshold, 0, max_livability)
livability.loc[accessibilityInputs[key] >= threshold, key] = max_livability
livability.loc[accessibilityInputs[key] < threshold, key] = livability_score
if any(domains):
for domain in domains:
if domain != 'Workplaces':
livability.loc[accessibilityInputs[key] >= threshold, domain] += max_livability
livability.loc[accessibilityInputs[key] < threshold, domain] += livability_score
elif key == 'commercial':
livability_score = remap(accessibilityInputs['jobs'], 0, threshold, 0, max_livability)
livability.loc[accessibilityInputs['jobs'] >= threshold, domains[0]] = max_livability
livability.loc[accessibilityInputs['jobs'] < threshold, domains[0]] = livability_score
return livability
def findUniqueDomains (livabilityMapperDict):
# find a set of unique domains, to which subdomains are aggregated
temp = []
domain_list = []
for key, values in livabilityMapperDict.items():
domain = livabilityMapperDict[key]['domain']
for item in domain:
if ',' in item:
domain_list = item.split(',')
livabilityMapperDict[key]['domain'] = domain_list
for domain in domain_list:
temp.append(domain)
else:
if item != 0:
temp.append(item)
domainsUnique = list(set(temp))
return domainsUnique
def findUniqueSubdomains (landuseMapperDict):
# find a list of unique subdomains, to which land uses are aggregated
temp = []
for key, values in landuseMapperDict.items():
subdomain = str(landuseMapperDict[key]["subdomain livability"])
if subdomain != 0:
temp.append(subdomain)
subdomainsUnique = list(set(temp))
return subdomainsUnique
|