File size: 64,917 Bytes
a86ca18
 
143e8bd
a86ca18
 
 
 
 
 
 
 
f2c15d5
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c15d5
a86ca18
 
 
143e8bd
 
a86ca18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143e8bd
 
 
 
 
 
 
 
a86ca18
 
143e8bd
 
 
 
 
 
 
 
 
 
 
a86ca18
 
143e8bd
 
 
 
 
a86ca18
143e8bd
 
a86ca18
878bd55
 
143e8bd
 
9905b93
 
 
 
143e8bd
 
 
 
 
 
 
 
9905b93
 
 
 
143e8bd
 
 
 
9905b93
878bd55
143e8bd
 
 
 
 
9905b93
143e8bd
9905b93
 
 
 
 
 
 
143e8bd
 
 
 
 
 
 
 
9905b93
143e8bd
9905b93
 
 
 
 
 
 
 
 
143e8bd
 
 
 
 
 
 
 
9905b93
 
 
 
 
 
 
 
143e8bd
 
 
 
 
 
 
 
9905b93
 
 
 
 
 
 
 
 
878bd55
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c15d5
a86ca18
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
143e8bd
 
 
 
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
a86ca18
143e8bd
 
 
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
 
 
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
 
 
 
 
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
 
a86ca18
143e8bd
 
a86ca18
143e8bd
a86ca18
143e8bd
 
 
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
 
a86ca18
143e8bd
 
a86ca18
143e8bd
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
 
 
 
 
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
 
 
 
a86ca18
143e8bd
 
 
 
 
a86ca18
143e8bd
 
 
a86ca18
143e8bd
 
 
 
 
a86ca18
143e8bd
a86ca18
143e8bd
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
 
 
 
 
a86ca18
143e8bd
a86ca18
143e8bd
 
a86ca18
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
 
 
 
 
 
 
 
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
143e8bd
 
a86ca18
 
 
143e8bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86ca18
 
143e8bd
 
 
a86ca18
 
143e8bd
 
 
f2c15d5
a86ca18
143e8bd
a86ca18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
<!DOCTYPE html>
<html>

<head>
    <script src="distill.bundle.js" type="module" fetchpriority="high" blocking></script>
    <script src="main.bundle.js" type="module" fetchpriority="low" defer></script>
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <meta charset="utf8">
    <base target="_blank">
    <title>FineWeb: decanting the web for the finest text data at scale</title>
    <link rel="stylesheet" href="style.css">
    <style>
        #controls {
            display: grid;
            grid-template-columns: 350px 350px;
            gap: 1px;
            align-items: center;
            max-width: 700px;
            margin: 0 auto 20px;
            padding: 0 10px;
        }

        #controls .row {
            display: contents;
        }

        #controls .cell {
            padding: 1px;
            box-sizing: border-box;
        }

        #controls .column-1 {
            display: flex;
            align-items: center;
            justify-content: space-between;
        }

        #controls .column-2 {
            display: flex;
            align-items: center;
            justify-content: space-between;
        }

        #controls label {
            text-align: right;
            padding-right: 10px;
            flex: 0 0 auto;
            width: 150px;
            line-height: 1.5em;
            font-size: 0.8em;
        }

        #controls input[type="range"] {
            width: 50%;
            margin: 0 10px;
        }

        #controls input[type="number"] {
            width: 60px;
            height: 20px;
        }

        #controls select {
            width: 100%;
        }

        #controls .column {
            display: contents;
        }

        #graph svg {
            font-family: sans-serif;
        }

        #graph svg rect {
            cursor: pointer;
        }
    </style>
</head>

<body>
    <d-front-matter>
        <script id='distill-front-matter' type="text/json">{
    "title": "🔭 Ultra-Guide to Scaling LLM training",
    "description": "This blog covers everything about scaling LLMs in 2024.",
    "published": "Sept 28, 2024",
    "affiliation": {"name": "HuggingFace"},
    "authors": [
      {
        "author":"Leandro Werra",
        "authorURL":"https://huggingface.co/lvwerra"
      },
      {
        "author":"Thomas Wolf",
        "authorURL":"https://huggingface.co/thomwolf"
      }
    ],
    "katex": {
      "delimiters": [
        {"left": "$$", "right": "$$", "display": false}
      ]
    }
  }
    </script>
    </d-front-matter>
    <d-title>
        <h1 class="l-page" style="text-align: center;">🔭 Ultra-Guide to Scaling LLM training</h1>
        <div id="title-plot" class="main-plot-container l-screen">
            <figure>
                <img src="assets/images/banner.png" alt="FineWeb">
            </figure>
            <!-- <div id="clusters-plot">
            <img src="assets/images/clusters.png" alt="Clusters">
        </div> -->
        </div>
    </d-title>
    <d-byline></d-byline>
    <d-article>
        <d-contents>
        </d-contents>

        <p>The performance of a large language model (LLM) depends heavily on the quality and size of the LLMs.
            However, the pretraining datasets for state-of-the-art open LLMs like Llama 3<d-cite
                bibtex-key="llama3modelcard"></d-cite> and Mixtral<d-cite bibtex-key="jiang2024mixtral"></d-cite> are
            not publicly available and very little is known about how they were created.</p>
        <aside>Reading time: 7 days. For the best reading experience, we recommend not using a mobile phone.</aside>

        <p>Recently, we released <a href="https://huggingface.co/datasets/HuggingFaceFW/fineweb"><strong>🍷
                    FineWeb</strong></a>, a new, large-scale
            (<strong>15-trillion tokens, 44TB disk space</strong>) dataset for LLM pretraining. FineWeb is derived from
            96 <a href="https://commoncrawl.org/">CommonCrawl</a> snapshots and produces <strong>better-performing LLMs
                than other open pretraining datasets</strong>.

        <aside>We are extremely thankful to the whole <a href="https://distill.pub/">distill.pub</a> team for creating
            the template on which we based this blog post.</aside>

        <div id="graph" style="position: relative; width: 700px; height: 500px;"></div>
        <div id="controls">
            <div class="row">
                <div class="cell column-1">
                    <label for="a">Attention Heads (a):</label>
                    <input type="range" id="a" name="a" min="1" max="128" value="8">
                    <input type="number" id="a_input" value="8" min="1" max="128">
                </div>
                <div class="cell column-2">
                    <label for="mixed">Mixed Precision:</label>
                    <input type="checkbox" id="mixed" name="mixed" checked>
                    <span></span> <!-- Empty span to maintain grid alignment -->
                </div>
            </div>
            <div class="row">
                <div class="cell column-1">
                    <label for="b">Micro Batch Size (b):</label>
                    <input type="range" id="b" name="b" min="1" max="53248" value="32">
                    <input type="number" id="b_input" value="32" min="1" max="53248">
                </div>
                <div class="cell column-2">
                    <label for="seq_parallel">Sequence Parallelism:</label>
                    <input type="checkbox" id="seq_parallel" name="seq_parallel">
                    <span></span> <!-- Empty span to maintain grid alignment -->
                </div>
            </div>
            <div class="row">
                <div class="cell column-1">
                    <label for="h">Hidden Dimension (h):</label>
                    <input type="range" id="h" name="h" min="1" max="16384" value="512">
                    <input type="number" id="h_input" value="512" min="128" max="16384">
                </div>
                <div class="cell column-2">
                    <label for="recomputation">Recomputation:</label>
                    <select id="recomputation" name="recomputation">
                        <option value="none">None</option>
                        <option value="selective">Selective</option>
                        <option value="full">Full</option>
                    </select>
                    <span></span> <!-- Empty span to maintain grid alignment -->

                </div>
            </div>
            <div class="row">
                <div class="cell column-1">
                    <label for="h_ff">Feedforward Dimension (h_ff):</label>
                    <input type="range" id="h_ff" name="h_ff" min="1" max="65536" value="2048">
                    <input type="number" id="h_ff_input" value="2048" min="512" max="65536">
                </div>
                <div class="cell column-2">
                    <label for="zero">Zero:</label>
                    <select id="zero" name="zero">
                        <option value="0">0</option>
                        <option value="1">1</option>
                        <option value="2">2</option>
                        <option value="3">3</option>
                    </select>
                    <span></span> <!-- Empty span to maintain grid alignment -->
                </div>
            </div>
            <div class="row">
                <div class="cell column-1">
                    <label for="L">Number of Layers (L):</label>
                    <input type="range" id="L" name="L" min="1" max="126" value="12">
                    <input type="number" id="L_input" value="12" min="1" max="126">
                </div>
                <div class="cell column-2">
                    <label for="ff_activation">FF Activation:</label>
                    <select id="ff_activation" name="ff_activation">
                        <option value="relu">ReLU</option>
                        <option value="gelu">GELU</option>
                        <option value="swiglu">SwiGLU</option>
                    </select>
                    <span></span> <!-- Empty span to maintain grid alignment -->
                </div>
            </div>
            <div class="row">
                <div class="cell column-1">
                    <label for="s">Sequence Length (s):</label>
                    <input type="range" id="s" name="s" min="1" max="128000" value="128">
                    <input type="number" id="s_input" value="128" min="64" max="128000">
                </div>
                <div class="cell column-2">
                    <label for="presets">Presets:</label>
                    <select id="presets" name="presets">
                        <option value="Llama 3 Tiny">Llama 3 Tiny</option>
                        <option value="Llama 3 8B">Llama 3 8B</option>
                        <option value="Llama 3 70B">Llama 3 70B</option>
                        <option value="Llama 3 405B">Llama 3 405B</option>
                    </select>
                    <span></span> <!-- Empty span to maintain grid alignment -->
                </div>
            </div>
            <div class="row">
                <div class="cell column-1">
                    <label for="v">Vocabulary Size (v):</label>
                    <input type="range" id="v" name="v" min="1000" max="100000" value="30522">
                    <input type="number" id="v_input" value="30522" min="1000" max="100000">
                </div>
                <div class="cell column-2">
                    <label for="tp">Tensor Parallelism (t):</label>
                    <input type="range" id="tp" name="tp" min="1" max="16" value="8">
                    <input type="number" id="tp_input" value="8" min="1" max="16">
                </div>
            </div>
            <div class="row">
                <div class="cell column-1">
                    <label for="k">Optimizer Parameters (k):</label>
                    <input type="range" id="k" name="k" min="1" max="16" value="8">
                    <input type="number" id="k_input" value="8" min="1" max="16">
                </div>
                <div class="cell column-2">
                    <label for="dp">Data Parallelism (d):</label>
                    <input type="range" id="dp" name="dp" min="1" max="256" value="1">
                    <input type="number" id="dp_input" value="1" min="1" max="256">
                </div>
            </div>
        </div>

        <p><strong>TLDR:</strong> This blog covers a discussion on processing and evaluating data quality at scale, the
            🍷 FineWeb
            recipe (listing and explaining all of our design choices), and the process followed to create its 📚
            FineWeb-Edu subset.</p>

        <h2>Scaling Models and Hardware</h2>

        <p>Now that we know the basics of distributed communication and computations it's time to apply this to training
            LLMs at scale. Here's the plan of action: we'll go through increasingly complex distribution strategies,
            namely data, then tensor and finally pipeline parallelism, and show three things:</p>

        <ol>
            <li>conceptual explanations with diagrams</li>
            <li>a minimal coding example illustrating how to implement said strategy</li>
            <li>scaling experiments show casing strengths and limits of the method with real data</li>
        </ol>

        <p>For the experiments we scale across two dimensions: we make the models larger and larger and add more and
            more compute nodes and measure how throughput changes.</p>

        <p>So this is a good point to get ☕ #2 and we'll have a look at the setup for the practical experiments.</p>

        <h2>Experiment setup</h2>

        <table>
            <thead>
                <tr>
                    <th></th>
                    <th><strong>1B (1)</strong></th>
                    <th><strong>7B</strong></th>
                    <th><strong>70B</strong></th>
                    <th><strong>340B (2)</strong></th>
                    <th><strong>400B (3)</strong></th>
                </tr>
            </thead>
            <tbody>
                <tr>
                    <td><strong>N Layers</strong></td>
                    <td>24</td>
                    <td>32</td>
                    <td>80</td>
                    <td>96</td>
                    <td>126</td>
                </tr>
                <tr>
                    <td><strong>N Heads</strong></td>
                    <td>32</td>
                    <td>32</td>
                    <td>64</td>
                    <td>96</td>
                    <td>128</td>
                </tr>
                <tr>
                    <td><strong>Dimension</strong></td>
                    <td>2048</td>
                    <td>4096</td>
                    <td>8192</td>
                    <td>18432</td>
                    <td>16384</td>
                </tr>
            </tbody>
        </table>

        <p>(1) FineWeb ablation models</p>
        <p>(2) Nemotron-340B architecture (without GQA)</p>
        <p>(3) Llama-400B, ffn dim = 1.2 hidden dim (without GQA)</p>


        <h2>Distribution Methods</h2>

        <p>Efficiently training LLMs now requires amounts of compute which exceed in most case single GPUs or machine.
            Large distributed clusters are thus used to train these models and can range from hundreds to thousands of
            nodes each usually equipped with up to 8 GPUs. To make the best use of such an expensive hardware, a range
            of distributed training methods have been developed with the goal of ensuring that GPUs are highly utilized
            at all times and not waiting for data/synchronization/etc.</p>

        <p>Several methods can be used to distribute training and we'll start with 4D parallelism followed-up by
            DeepSpeed stages. While we explain these strategies we'll also run experiments to determine the trade-offs
            and understand the optimal settings.</p>
        <p>The name "4D parallelism" originates from the fact that it involves combining up to 4 distribution methods:
            data, tensor, pipeline, and sequence parallelism (each of these techniques can be used independently of the
            other). You may thus ask "So which one should I use?".</p>

        <p>Unfortunately, there is no universal answer as the response will actually depend on the cluster setup as well
            as the model architecture. But do not despair for in this section we'll develop strategies to figure out the
            best setting experimentally!</p>

        <p>In addition to 4D parallelism we'll also take a look at "DeepSpeed", a method developed by Microsoft which is
            generally complimentary to 4D parallelism and can be leveraged on top of it.</p>

        <p><strong>Idea: show two things in every section</strong></p>
        <ol>
            <li>a small toy model (e.g. 4 layer FFN) we can interactively show with every approach</li>
            <li>a benchmark showing the improvement/limits of the approach (e.g. when you cross 1 node with TP)</li>
        </ol>

        <h3>No Parallelism</h3>

        <p>Let's quickly go over the basics before going into distributed training. When a model is trained on a single
            GPU, the training consists of 3 steps in the simplest case:</p>
        <ol>
            <li>one forward pass,</li>
            <li>one backward pass to compute the gradients, and</li>
            <li>an optimization step using the gradients to update the parameters</li>
        </ol>

        <p>As we'll see in the future, these steps may be repeated or intertwined but for now we'll start simple:</p>
        <p>As we'll see in the future, these steps may be repeated or intertwined but for now we'll start simple:</p>

        <img src="assets/images/IMG_7537D08D7F41-1.jpeg" alt="Training Steps">

        <p>In this figure the successive blue boxes on the top line can be seen as successive layers inside a model
            (same for the last line). The red boxes are the associated gradients for each of these layers.</p>

        <p>The batch size (<em>bs</em>) is one of the most important hyper-parameters in machine learning, affecting
            both model convergence and throughput.</p>

        <p>If the batch size is too small, gradients will tend to be noisy and the model may not be able to converge to
            optimal performances while a batch size too large can make the convergence of the model slower and waste
            compute. You can find a nice discussion of this topic in OpenAI's paper on large batch training (<a
                href="https://arxiv.org/abs/1812.06162">https://arxiv.org/pdf/1812.06162</a>).</p>

        <p>The batch size also affects the throughput: a small batch size will require more optimizer steps to train on
            a given amount of samples. Optimizer steps are costly (in compute time) and the throughput will thus be
            lower than when using a larger batch size. On the other hand, larger batches, while leading to higher
            throughput may suffer from slow convergence in the limits as we've just seen. There is generally an optimal
            batch size from a convergence/performance point of view (note that the batch size can usually still be
            changed around the optimal batch size without major impact to the performance of the model).</p>

        <p>Note that in the LLM community, batch sizes are commonly reported in terms of tokens instead of number of
            samples (BST - Batch Size Tokens) as each token has a label and thus a loss term and can thus be considered
            individual (although highly correlated) samples.</p>

        <p>A sweet spot for LLM training is usually on the order of 4-20 million tokens per batch (links GPT-3,
            DeepSeek, Llama). In the simplest case, training on a single machine, the <em>BS</em> and <em>BST</em> can
            be computed from the model input sequence length as follows:</p>

        <d-math>
            bst=bs *seq
        </d-math>

        <p>(note that from here on forward we'll show the formulas for the batch size in number of samples but you can
            always get its token-unit counterpart by multiplying it with the sequence length)</p>

        <p>And we're now hitting our first scaling problem:</p>

        <blockquote>
            <p>what if we can't fit the model into GPU memory even with <code>BS=1</code>?</p>
        </blockquote>

        <p>Good question, reader!</p>

        <p>Let's start by understanding what led to our out-of-memory issue in the first place.</p>

        <h2>A brief overview of memory usage in Transformers</h2>

        <p>To train a neural network model, one needs to store many elements in memory besides the weights themselves.
            Generally, the memory usage is made up from the following elements:</p>
        <ul>
            <li>model weights</li>
            <li>model gradients</li>
            <li>optimizer states</li>
            <li>activations computed during the forward pass and which are needed to compute the backward pass</li>
            <li>also CUDA Kernels require 1-2GB of GPU memory which you can quickly check yourself by running
                <code>import torch; torch.ones((1, 1)).to("cuda")</code> and then checking the GPU memory with
                <code>nvidia-smi</code>
            </li>
            <li>lower rest memory usage from buffers, intermediate results and some memory that can't be used due to
                fragmentation</li>
        </ul>

        <p>Scaling up training is usually a question of playing with those constituents to keep memory low while not
            impacting performance too much. We'll neglect the last two contributors as there's usually not that much you
            can do about them unless you dive deep in the code.</p>

        <p>For the rest, they are usually different types of tensors that can have various sizes (usually multiples of
            one or several of batch size, sequence length, model hidden dimension and some potential sharding) and
            various precisions (with optimizer states and weights copy being often kept in full FP32 precision while
            activations can be of lower precision like BF16 or FP8). Let's try to get some intuition for the memory
            requirement of these various elements.</p>

        <p>Let's first look at the weights, gradients and optimizer states. They are all dependent on the number of
            parameters in a model. For a simple LLM the number of parameters is given by the following formula:</p>

        <d-math>
            N = h*v + L * (12 * h^2 + 13*h) + 2*h
        </d-math>

        <p>In that equation, <em>h</em> corresponds to the hidden dimension, <em>v</em> to the vocabulary size, and
            <em>L</em> the number of layers in the model. Note that looking at the equation we can see that the term
            that will dominate at large model scales is the one with <em>h^2</em> since it's the only term growing
            quadratically as we scale the models.
        </p>

        <p>Let's see how the number of parameters translates to memory usage. The memory requirements for the parameters
            and gradients are the number of parameters multiplied by the number of bytes per parameter. Mixed precision
            training with BF16 is the default nowadays which requires 2 bytes per parameter. In addition, there are a
            number of values necessary for the optimizer states: for ADAM it requires the momentum and the variance in
            FP32, each using 4 bytes, and an additional copy of the model weights in FP32, thus 12 bytes per parameter
            (ref: <a href="https://arxiv.org/pdf/1910.02054">ZeRO</a>):</p>

        <d-math>
            m_{params} = 2 * N
            m_{grad} = 2 * N
            m_{opt} = (4+4+4) * N
        </d-math>

        <p>In old-fashioned full precision training both parameters and gradients would require 4 bytes each but the
            optimizer on the other hand wouldn't need to store an extra full precision copy of the weights:</p>

        <d-math>
            m_{params} = 4 * N
            m_{grad} = 4 * N
            m_{opt} = (4+4) * N
        </d-math>

        <p>So we can easily see that mixed precision itself doesn't save memory as it just distributes the memory
            differently across the three components. So by multiplying the number of parameters by 16 (=2+2+12) you can
            quickly get a sense of how much GPU memory we need for a model:</p>
        <p>So we can easily see that mixed precision itself doesn't save memory as it just distributes the memory
            differently across the three components. So by multiplying the number of parameters by 16 (=2+2+12) you can
            quickly get a sense of how much GPU memory we need for a model:</p>

        <table>
            <thead>
                <tr>
                    <th>Model parameters</th>
                    <th>Memory requirements</th>
                </tr>
            </thead>
            <tbody>
                <tr>
                    <td>1B</td>
                    <td>16 GB</td>
                </tr>
                <tr>
                    <td>7B</td>
                    <td>112 GB</td>
                </tr>
                <tr>
                    <td>70B</td>
                    <td>1120 GB</td>
                </tr>
                <tr>
                    <td>405B</td>
                    <td>6480 GB</td>
                </tr>
            </tbody>
        </table>

        <p>We can further decrease the memory usage if we choose FP8 training instead of BF16 but it is much less stable
            and a very active research topic (see <a href="https://x.com/xariusrke/status/1826669126955278401">here</a>)
            thus we won't go in details here.</p>

        <p>But we are not done yet, we'll also need to store the forward pass activations which are used during the
            backward pass to compute the gradients. The total memory required for the activations in mixed precision
            (which contributes the leading factor of 2 below) is given by the following equation:</p>

        <d-math>
            m_{act} = 2 * L* seq * bs * h * (34 + \frac{5*n_{heads}*seq}{h})
        </d-math>

        <p>You can follow <a href="https://arxiv.org/pdf/2205.05198">this NVIDIA paper</a> for a complete derivation, it
            essentially requires you to do some accounting of all the sizes of intermediate activations between each
            operation. What's interesting here is that the memory is not static for a given model but depends critically
            on the sequence length. We can use the memory formulas and have a look how the memory usage changes for a
            model for various sequence lengths:</p>

        <img src="assets/images/image%206.png" alt="Memory Usage Graph 1">
        <img src="assets/images/image%207.png" alt="Memory Usage Graph 2">

        <p>This graph tells a striking story: for short sequences, activations are almost negligible, but starting at
            around 2-4k tokens they start to take up a significant amount of memory while parameter, gradient and
            optimizer state are roughly independent of the sequence length and batch size. For large batch/sequence,
            activations however become by far the largest memory burden.</p>

        <p>Is there a way to tame this "activation explosion"?</p>

        <p>Good question, reader! I see you're following well and you're lucky as the answer is "Yes"! Let's talk about
            a technique called <strong>gradient checkpointing</strong> or more frequently <strong>activation
                recomputation</strong> which can help us cap activation memory footprint and is an essential tool in
            today's large model training toolbox.</p>

        <h3>Activation recomputation</h3>

        <p>The general idea behind gradient checkpointing is to discard some activations to save memory if we are
            willing to spend some extra compute to recompute them when needed. Typically we will save activations at
            some key points in memory and discard the rest and recompute them during the backward pass from the nearest
            activations:</p>

        <img src="assets/images/IMG_C4260C5C58DC-1.jpeg" alt="Activation Recompute">

        <p>We can select these key activations according to several strategies and modern frameworks usually choose
            among the following three strategies:</p>
        <ul>
            <li><strong>None</strong>: We don't recompute activations during the backward pass and keep all activations
                in memory. While this is the fastest and thus computationally cheapest option, it also requires the most
                memory.</li>
            <li><strong>Full</strong>: The simplest strategy from a conceptual point of view is to checkpoint
                activations between each Transformer layer. This is usually called the <code>full</code> strategy since
                it requires a forward pass through each layer essentially adding a full forward pass during the backward
                pass. This strategy saves the most memory but is the most expensive one in terms of compute. This
                increases the compute cost by up to 30-40% which is very noticeable.</li>
            <li><strong>Selective</strong>: In general we can do better than full. The authors of <a
                    href="https://arxiv.org/pdf/2205.05198">this paper</a> did a detailed analysis studying which
                activations grow the largest and have the cheapest recomputation cost in terms of FLOPs. Turns out that
                the attention computations fall in that category, and thus we can usually discard them and focus on
                checkpointing expensive feedforward computations. Note: for a GPT-3 (175B) model this means 70%
                activation memory reduction at a 2.7% compute cost.</li>
        </ul>

        <p>Let's see how recomputation strategies can drastically reduce the memory footprint while selective
            recomputation strikes a nice balance between memory saving and recomputation cost:</p>
        <p>Let's see how recomputation strategies can drastically reduce the memory footprint while selective
            recomputation strikes a nice balance between memory saving and recomputation cost:</p>

        <img src="assets/images/image%208.png" alt="Recomputation Strategies">

        <p>Note: Hardware vs Model flops.</p>

        <p>Most frameworks these days use FlashAttention (TODO: see later) which makes the attention computation less
            memory intensive through kernel fusion, thus most trainings use the <code>full</code> settings.</p>

        <p>We can save some GPU memory with activation recomputation but this only delays by a bit the next bottleneck:
            as hinted earlier for LLM training there is usually a sweet spot for the GBST and we need to work out the
            training configuration backward from there. However, you can't choose MBS to be an arbitrary large number on
            your GPU; at some point you will run out of GPU memory again since you need to store at least some of the
            activations in memory.</p>

        <p>There is a useful trick to compensate for that: <strong>gradient accumulation</strong> (<em>GradAcc</em>).
            With gradient accumulation we will split our batch in micro-batch, do forward and backward passes repeatedly
            on each micro-batch, compute the gradients, and, as the name suggests, sum the gradients step by step before
            doing a final optimizer step.</p>

        <p>We call the <code>micro batch size</code> (MBS) the batch size for each forward pass on a single node (the
            number of samples flowing through the model in one forward pass). We'll refer to the overall batch size
            between each optimizer step as the <code>global batch size</code> (GBS). If we do one optimizer step each 8
            forward/backward pass, the <code>global batch size</code> will be 8 times the <code>micro batch size</code>.
        </p>

        <p>What we now call <code>global batch size</code> thus corresponds to what we've called up to now just
            <code>batch size</code> for simplicity (we now make the terms more precise to avoid ambiguity).
        </p>

        <p>With gradient accumulation the global batch size can be computed as follows:</p>

        <d-math>
            BS = GBS=MBS * GradAcc
        </d-math>

        <p>Gradient accumulation allows us to effectively increase our batch size up to infinity (!) while the memory
            footprint stays constant. Gradient accumulation is also compatible with activation recomputation for further
            memory reduction. One drawback however, is that gradient accumulation requires multiple consecutive
            forward/backward passes per optimization step thereby increasing the compute overhead and slowing down
            training. No free lunch!</p>

        <img src="assets/images/IMG_DA188FF29F45-1.jpeg" alt="Gradient Accumulation">

        <p>This is actually a bummer since the forward/backward passes for each micro-batch could actually totally be
            run in parallel. They are independent from each other and the only changing parameter are the input samples.
        </p>

        <p>Here comes data parallelism to solve exactly this problem! Let's take a look, you say? Okay sure!</p>

        <h3>Data Parallelism</h3>

        <p>The idea behind data parallelism (DP) is to parallelize forward and backward passes across GPUs, passing
            different batches of data per GPU (or groups of GPUs) to the same model instance. Just like for gradient
            accumulation, we need to average gradients across instances before we do the optimization step. The GBS
            equation can then be extended to:</p>

        <d-math>
            GBS=MBS * GradAcc * DP
        </d-math>

        <p>This means that we can reduce the number of gradient accumulation steps in favor of data parallel processes
            which speeds up training. In practice, people will tend to max out the number of data parallel nodes (the DP
            above) as much as possible as it's inherently parallel versus the sequential Gradient Accumulation. Gradient
            accumulation is then added only to achieve a target batch size if DP alone is not sufficient. One exception
            to that is pipeline parallelism which we'll discuss later.</p>

        <img src="assets/images/IMG_A95961668B3F-1.jpeg" alt="Data Parallelism">

        <p>As you can see on the figure above, some gradients can already be gathered and summed (red boxes) even before
            gradients down the line (red boxes on the left of the current gradient) are still being computed. This
            significantly speeds up data parallelism. For instance, as soon as the backward pass of the last layer is
            done (last boxes on the right) those gradients can already be gathered/summed while the backward pass
            computations move to earlier layers, aka to the left. This lowers the communication/bandwidth pressure to
            sync gradients of the full model as it can be performed in part in parallel to the computation of said
            gradients. See <a href="https://siboehm.com/articles/22/data-parallel-training">this article</a> for more
            information.</p>

        <p>A general recipe to determine an optimal data-parallel setup can be as follows:</p>
        <ol>
            <li>Determine the best (global) batch size in tokens to use either by consulting literature or running
                experiments? This determines the GBST.</li>
            <li>Select a sequence length for training, again by either consulting literature or running experiments.
                Generally 2-8k tokens works reliably well.</li>
            <li>You now know the batch size (GBS=GBST/SeqLen). Find the maximum MBS on a single GPU by increasing the
                local batch size until you run out of memory. This determines the MBS.</li>
            <li>Finally, the number of available GPUs corresponds to the potential DP. The ratio of GPT to DP determines
                the remaining number of gradient accumulation steps needed for the desired GBS.</li>
        </ol>

        <p>If the gradient accumulation ratio is lower than one, i.e. you have too many GPUs (!), you can either choose
            to not use all your GPUs or test if a lower MBS will speed up training. In these cases, you may want to
            prioritize throughput over the individual GPU utilization, you can then choose DP first and use a smaller
            MBS than possible in order to speed up training.</p>

        <p>Time to take a concrete example: We want to train a model with a GBS of 4M tokens and a sequence length of
            4k. This means our batch size will be 1024 samples (we pick powers of two). We observe that a single of our
            GPU can fit MBS=2 in memory and we have 128 GPUs available for training. This means with 4 gradient
            accumulation steps we'll achieve our goal of 1024 samples or 4M tokens per training step. Now what if we
            suddenly have 1024 GPUs available? We can achieve the same GBS and thus identical training by setting both
            MBS and gradient accumulation to 1 speeding up training significantly.</p>

        <p>[EXPERIMENTS WHERE WE INCREASE DP AND SHOW THROUGHPUT FOR SEVERAL MODELS]</p>

        <p>We've explored data parallelism, a simple strategy to scale training across more GPUs and gives consistent
            speed improvements. The keen reader might have noticed however that it rests on the assumption that we can
            fit at least one input sample forward pass (<em>MBS=1</em>) into our GPU memory. This is not always the
            case! In particular for larger models which often don't fit into a single GPU anymore even with activation
            recomputations activated.</p>

        <p>In such case, we need to shard the model across devices! We'll now study two complementary sharding methods,
            tensor and pipeline parallelism which are doing that. Let's start by the simplest, tensor parallelism!</p>

        <h3>Tensor Parallelism</h3>

        <p>So you've exhausted all the previous textbook tricks to try to fit your model on a single GPU but it still
            doesn't fit? Let's try to distribute this model across several GPUs. Unlike DP we will not simply duplicate
            the model but various parts of the model instance will be living on various GPUs.</p>

        <p>If we take a look at a typical matrix multiplication (the core of a neural network), we can get an idea about
            how we could split the model:</p>

        <img src="assets/images/image%209.png" alt="Matrix Multiplication Example">

        <p>Tensor parallelism is a technique in which a tensor is split into N shards along a particular dimension
            across N GPUs. Matrices can be split either on the column part or row part leading to row and column
            parallelism. Depending on which splitting strategy we choose will require different communications
            primitives.</p>

        <p><strong>Column linear:</strong></p>
        <ul>
            <li>Splitting by column or row involves different synchronization primitives:
                <ul>
                    <li>column:
                        <ul>
                            <li>A <strong>Broadcast</strong> operation is used to send the same input to different GPUs,
                            </li>
                            <li>Multiplications are done independently on the GPUs, and finally</li>
                            <li>An <strong>All-gather</strong> operation is used to gather the output results.</li>
                        </ul>
                    </li>
                    <li>Row:
                        <ul>
                            <li>A <strong>Scatter</strong> operation is used to split the input and send it to different
                                GPUs (we split the weight row-wise),</li>
                            <li>Multiplications are done independently on the GPUs, and finally</li>
                            <li>An <strong>All-reduce</strong> operation is used to add the results together and the
                                full output results.</li>
                        </ul>
                    </li>
                </ul>
            </li>
        </ul>

        <p>This was for an example matrix multiplication. How do we apply this in practice to a real model? In the
            Transformer, there are 2 basic building blocks where tensor parallel can be applied:</p>
        <ul>
            <li>Feedforward layers (MLP)</li>
            <li>Multi-Head Attention (MHA)</li>
        </ul>

        <p>Feedforward layers comprise 2 successive MLPs with a non-linearity in-between. Here is the first part of it:
        </p>

        <img src="assets/images/image%2012.png" alt="Feedforward Layers">

        <p>Should we use row or column parallelization for the first MLP?</p>

        <p>Well it turns out parallelized GeLU only works in Column schema:</p>

        <p>In column schema:</p>
        <d-math>
            GeLU(cat([XW1, XW2])) = cat([GeLU(XW1), GeLU(XW2)])
        </d-math>

        <p>In row schema:</p>
        <d-math>
            GeLU(XW1 + XW2) \neq GeLU(XW1) + GeLU(XW2)
        </d-math>

        <p>If you rather like code, note that we can prove this with the following snippet as well:</p>

        <d-code block language="python">
            ```
            </region_of_file_to_rewritten_file>
            def example_gelu():
            from torch.nn.functional import gelu

            X = torch.randn(4, 2, device="cuda", dtype=torch.float32)
            W = torch.randn(2, 2, device="cuda", dtype=torch.float32)

            W_0, W_1 = W.chunk(2, dim=1)

            # Column linear
            y_col_1 = torch.cat([gelu(X @ W_0), gelu(X @ W_1)], dim=1)
            y_col_2 = gelu(torch.cat([X @ W_0, X @ W_1], dim=1))

            # All match
            torch.testing.assert_close(y_col_1, y_col_2, rtol=1e-5, atol=1e-5)

            # Row linear
            X_0, X_1 = X.chunk(2, dim=1)
            W_0, W_1 = W.chunk(2, dim=0)
            y_row_1 = gelu(X_0 @ W_0) + gelu(X_1 @ W_1)
            y_row_2 = gelu(X_0 @ W_0 + X_1 @ W_1)

            # Mismatch
            torch.testing.assert_close(y_row_1, y_row_2, rtol=1e-5, atol=1e-5)
        </d-code>

        <p>To avoid a synchronization step directly after the first MLP, we'll thus start with Column Parallel and be
            able to directly perform parallel GELU.</p>

        <p>Now, what about the second MLP? Should it be column or row parallel? Let's draft both options:</p>
        <ul>
            <li>Column Parallel followed by Column Parallel</li>
            <img src="assets/images/image%2013.png" alt="Column Parallel Schema 1">
            <li>Column Parallel followed by Row Parallel</li>
            <img src="assets/images/image%2014.png" alt="Column Parallel Schema 2">
        </ul>

        <p>We see that the "Column Parallel followed by Row Parallel" schema only involves two communications instead of
            four. It's thus the most efficient schema in terms of communications.</p>

        <p>Let's take a quick look at the backward pass:</p>
        <img src="assets/images/image%2015.png" alt="Backward Pass 1">
        <img src="assets/images/image%2016.png" alt="Backward Pass 2">

        <d-code block language="python">
            def column_linear_forward(X, local_W, group):
            Y_local = X @ local_W.t()
            return Y_local

            def column_linear_backward(local_grad_Y, X, local_W, group):
            local_grad_X = local_grad_Y @ local_W
            grad_W = local_grad_Y.t() @ X
            return local_grad_X, grad_W

            def row_linear_forward(local_X, local_W, group):
            Y_local = local_X @ local_W.t()
            dist.all_reduce(Y_local, group=group)
            Y = Y_local
            return Y

            def row_linear_backward(grad_Y, X, local_W, group):
            local_grad_X = grad_Y @ local_W
            grad_W = grad_Y.t() @ X
            return local_grad_X, grad_W

            def example_column_row_linear():
            # torchrun --nproc_per_node=2 tp_all_reduce.py
            group = dist.distributed_c10d._get_default_group()

            X_ref = torch.arange(4 * 2, device="cuda", dtype=torch.float32, requires_grad=True).reshape(4, 2)
            W_ref_layer1 = torch.arange(1, 5, device="cuda", dtype=torch.float32, requires_grad=True).reshape(2, 2) * 10
            W_ref_layer2 = torch.arange(1, 5, device="cuda", dtype=torch.float32, requires_grad=True).reshape(2, 2)

            X_ref.retain_grad()
            W_ref_layer1.retain_grad()
            W_ref_layer2.retain_grad()

            dist.broadcast(X_ref, src=0, group=group)
            dist.broadcast(W_ref_layer1, src=0, group=group)
            dist.broadcast(W_ref_layer2, src=0, group=group)

            X = X_ref.clone()
            W_layer1 = W_ref_layer1.clone()
            W_layer2 = W_ref_layer2.clone()

            # Forward
            Y_ref_linear1 = X_ref @ W_ref_layer1.t()
            Y_ref_linear1.retain_grad()

            # We will transpose for matrix multiplication. As a result, we need to split row-wise
            Y_local_linear1 = column_linear_forward(X, split_tensor(W_layer1, dim=0), group)

            torch.testing.assert_close(Y_local_linear1, split_tensor(Y_ref_linear1, dim=1), rtol=1e-5, atol=1e-5)

            Y_local_linear2 = row_linear_forward(Y_local_linear1, split_tensor(W_ref_layer2, dim=1), group)
            Y_ref_linear2 = Y_ref_linear1 @ W_ref_layer2.t()
            torch.testing.assert_close(Y_local_linear2, Y_ref_linear2, rtol=1e-5, atol=1e-5)

            # Backward
            Y_ref_linear2.sum().backward()

            grad_Y = torch.ones_like(Y_ref_linear2)
            grad_X_linear2, grad_W_linear2 = row_linear_backward(grad_Y, Y_local_linear1, split_tensor(W_layer2, dim=1),
            group)

            torch.testing.assert_close(grad_X_linear2, split_tensor(Y_ref_linear1.grad, dim=1), rtol=1e-5, atol=1e-5)
            torch.testing.assert_close(grad_W_linear2, split_tensor(W_ref_layer2.grad, dim=1), rtol=1e-5, atol=1e-5)

            grad_X, grad_W = column_linear_backward(grad_X_linear2, X, split_tensor(W_layer1, dim=0), group)

            torch.testing.assert_close(grad_X, X_ref.grad, rtol=1e-5, atol=1e-5)
            torch.testing.assert_close(grad_W, split_tensor(W_ref_layer1.grad, dim=0), rtol=1e-5, atol=1e-5)

            if __name__ == "__main__":
            dist.init_process_group("nccl", rank=int(os.environ["RANK"]), world_size=int(os.environ["WORLD_SIZE"]))
            torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))

            example_column_row_linear()
        </d-code>

        <p>Now that we've found the most efficient schema for the Feedforward part of the transformer, let's take a look
            at the multi-head attention block (MHA).</p>

        <p>We can generally follow a similar approach where the Q, K, V will be split in a Column Parallel fashion and
            the output projection will be split along the Row dimension.</p>

        <img src="assets/images/image%2017.png" alt="Multi-Head Attention Block">

        <p>To dive in further particularities, a nice reference paper detailing TP is for instance <a
                href="https://arxiv.org/abs/2205.05198">Megatron-LM: Training Multi-Billion Parameter Language Models
                Using Model Parallelism</a>.</p>

        <p>Note: Sequence Parallel</p>

        <h3>Sequence Parallelism</h3>

        <p>Tensor parallelism has been a great help to parallelize some of our computation on several GPU nodes with the
            limited cost of a few communication operations.</p>

        <p>It also had the additional benefit of reducing memory usage by splitting intermediate activations inside the
            feedforward elements across GPUs and thereby reducing the activations to store on each node.</p>

        <p>Could we push this approach further?</p>

        <p>Sequence parallelism applies this same idea to other parts of our model. We've applied tensor parallelism to
            two main parts in our models where combination of MLP allowed to naturally split the weights along major
            axis.</p>

        <p>The rest of the model mostly comprises layer norms, dropout and various summation of residuals, these
            contribute little to the computation but come with rather large forward activations to store.</p>

        <p>[Add some illustration of the forward activations to store for each part]</p>

        <h3>Context Parallelism</h3>

        <p>Even though TP-SP mode helps reduce the memory used by activation values, it has two main drawbacks:</p>
        <ol>
            <li>Internode connections are usually slow, so the TP degree shouldn't typically exceed 8</li>
            <li>The TP degree is limited by the number of Key/Value heads, which is 8 for LLaMA 3 8B.</li>
        </ol>

        <p>An empirical estimation is that with TP=8, you can only train an 8B model with a 20K context length. However,
            LLaMA 3.1 has managed to scale the context length to 128K by using context parallelism.</p>

        <p>There are several ways to implement sequence parallelism. We used ring attention, which overlaps
            communication and computation. LLaMA3.1 uses all-gather along the sequence dimension because it is easier
            and more flexible to support different types of attention masks in all-gather based CP attention, such as
            the document mask.</p>

        <h3>Pipeline Parallelism</h3>

        <h3>Overlapping computation and communication</h3>

        <h3>ZeRO</h3>

        <h2>II – Architecture</h2>

        <h3>Transformers</h3>

        <h3>Choosing the right dimensions</h3>

        <h3>Positional Embeddings (Learned, RoPE, ALiBi)</h3>

        <h3>RoPE</h3>

        <p>In the transformer model, tokens have no inherent information about their positional information. For these
            reasons, we need to use a positional encoding function.</p>

        <p>Assuming that in the multi-head attention layer, <em>q_m</em> is the "position-aware" query vector
            corresponding to a token at position <em>m</em>, <em>k_n</em> the "position-aware" key vector corresponding
            to the token at position <em>n</em> and <em>f</em> is our position embedding function, we would like our
            position vector to be a function of the input vectors and absolute positions like this:</p>

        <d-math>
            q_m = f(q,m)
            k_n = f(k,n)
        </d-math>

        <p>We may also want the positional encoding to model relative positional information between two input tokens.
            Relative positions help the model to operate across longer context spans and even context lengths not seen
            during training. The attention operation is generally a dot product operation between "position-aware"
            vectors <em>q</em> and <em>k</em>, so for a positional encoding that contains relative positional
            information, we'll want to have:</p>

        <d-math>
            <q_m, k_n> = g(q, k, m-n)
        </d-math>

        <p>In other words, we want the result of <em>⟨ 𝑞_𝑚 , 𝑘_𝑛 ⟩</em> to depend on the values of <em>q</em> and
            <em>k</em> themselves, as well as their relative position <em>m − n</em>, but not <em>m</em> and <em>n</em>.
            This way, the model can focus on the relative difference between two tokens rather than their absolute
            positions.
        </p>

        <p>Let's show that the RoPE positional embedding formulation satisfies the above formula.</p>

        <p><strong>Rotation matrix</strong></p>

        <p>RoPE are based on rotation matrices which have simple and interesting properties for us. In a 2D space, a
            rotation matrix has the following form:</p>

        <d-math>
            R(θ) =
            \begin{pmatrix}
            \cosθ & -\sinθ \\
            \sinθ & \cosθ
            \end{pmatrix}
        </d-math>

        <p>The rotation matrix has the following properties:</p>
        <ul>
            <li><em>R(θ)</em><sup>T</sup> = <em>R(-θ)</em></li>
            <li><em>R(θ<sub>1</sub>)R(θ<sub>2</sub>) = R(θ<sub>1</sub><sub>2</sub>)</li>
        </ul>

        <img src="assets/images/rotation.jpeg" alt="Rotation Matrix">

        <p><strong>RoPE in 2D space</strong></p>

        <p>Assuming <em>q</em> and <em>k</em> are 2D column vectors, we can show that:</p>

        <d-math>
            <R(θ_1)q, R(θ_2)k> = (R(θ_1)q)<sup>T</sup> (R(θ_2)k) = q<sup>T</sup>R(-θ_1)R(θ_2)k =
                q<sup>T</sup>R(θ_2-θ_1)k = (R(θ_1-θ_2)q)<sup>T</sup>k = <R(θ_1-θ_2)q,k>
        </d-math>

        <p>Therefore, if we define our position embedding like this: <em>f(x, m) = R(mθ)x</em> where <em>R</em> is a 2D
            rotation matrix, we have <em>q_m = R(mθ)q</em> and <em>k_n = R(nθ)k</em> and then:</p>

        <d-math>
            <q_m, k_n> = <R(mθ)q, R(nθ)k> = <R((m-n)θ)q, k>
        </d-math>

        <p>We can see that a multiplication with a rotation matrix is exactly the positional encoding we were looking
            for. The result of <em>⟨ 𝑞_𝑚 , 𝑘_𝑛 ⟩</em> only depends on <em>q</em>, <em>k</em> and <em>m-n</em>.</p>

        <p><strong>Implementation</strong></p>

        <p>In our case, our internal vectors (the activations in our model) have much more than two elements. Let's pair
            elements to get 2D vectors and apply the 2D rotation operation on these pairs.</p>

        <p>There are combinatorially many ways we can pair elements but generally two options are the most popular for
            implementing RoPE: we call them the <em>interleaved</em> and <em>non-interleaved</em> versions. (It's still
            rather unfortunate to have two popular options)</p>

        <ol>
            <li>In the interleaved version, we pair consecutive elements <em>(x<sub>0</sub>,
                    x<sub>1</sub>),(x<sub>2</sub>,x<sub>3</sub>),…</em> before applying the rotation matrix:</li>
            <d-math>
                R<sup>d</sup>_{θ,m}x=\begin{pmatrix}
                x_0 \\
                x_1 \\
                x_2 \\
                x_3 \\
                \vdots \\
                x_{d-2} \\
                x_{d-1}
                \end{pmatrix}
                \odot
                \begin{pmatrix}
                \cos mθ_0 \\
                \cos mθ_0 \\
                \cos mθ_1 \\
                \cos mθ_1 \\
                \vdots \\
                \cos mθ_{d/2-1} \\
                \cos mθ_{d/2-1}
                \end{pmatrix}
                +
                \begin{pmatrix}
                -x_1 \\
                x_0 \\
                -x_3 \\
                x_2 \\
                \vdots \\
                -x_{d-1} \\
                x_{d-2}
                \end{pmatrix}
                \odot
                \begin{pmatrix}
                \sin mθ_0 \\
                \sin mθ_0 \\
                \sin mθ_1 \\
                \sin mθ_1 \\
                \vdots \\
                \sin mθ_{d/2-1} \\
                \sin mθ_{d/2-1}
                \end{pmatrix}
            </d-math>
            <d-math>
                R<sup>d</sup>_{θ,m}x=\begin{pmatrix}
                x_0\cos mθ_0 - x_1\sin mθ_0 \\
                x_1\cos mθ_0 + x_0\sin mθ_0 \\
                x_2\cos mθ_1 - x_3\sin mθ_1 \\
                x_3\cos mθ_1 + x_2\sin mθ_1 \\
                \vdots \\
                x_{d-2}\cos mθ_{d/2-1} - x_{d-1}\sin mθ_{d/2-1} \\
                x_{d-1}\cos mθ_{d/2-1} + x_{d-2}\sin mθ_{d/2-1}
                \end{pmatrix}
            </d-math>
            <li>In the non-interleaved version, we split the vector in two to pair elements as follows:
                <em>(x<sub>0</sub>, x<sub>d/2</sub>),(x<sub>1</sub>,x<sub>d/2+1</sub>),…</em> This is the implementation
                used in the <code>transformers</code> library:
            </li>
            <d-math>
                R<sup>d</sup>_{θ,m}x=\begin{pmatrix}
                x_0 \\
                x_1 \\
                \vdots \\
                x_{d/2-1} \\
                x_{d/2} \\
                x_{d/2+1} \\
                \vdots \\
                x_{d-1}
                \end{pmatrix}
                \odot
                \begin{pmatrix}
                \cos mθ_0 \\
                \cos mθ_1 \\
                \vdots \\
                \cos mθ_{d/2-1} \\
                \cos mθ_{0} \\
                \cos mθ_{1} \\
                \vdots \\
                \cos mθ_{d/2-1}
                \end{pmatrix}
                +
                \begin{pmatrix}
                -x_{d/2} \\
                -x_{d/2+1} \\
                \vdots \\
                -x_{d-1} \\
                x_{0} \\
                x_{1} \\
                \vdots \\
                x_{d/2-1}
                \end{pmatrix}
                \odot
                \begin{pmatrix}
                \sin mθ_0 \\
                \sin mθ_1 \\
                \vdots \\
                \sin mθ_{d/2-1} \\
                \sin mθ_{0} \\
                \sin mθ_{1} \\
                \vdots \\
                \sin mθ_{d/2-1}
                \end{pmatrix}
            </d-math>
            <d-math>
                R<sup>d</sup>_{θ,m}x=\begin{pmatrix}
                x_0\cos mθ_0 - x_{d/2}\sin mθ_0 \\
                x_1\cos mθ_1 - x_{d/2+1}\sin mθ_1 \\
                \vdots \\
                x_{d/2-1}\cos mθ_{d/2-1} - x_{d-1}\sin mθ_{d/2-1} \\
                x_{d/2}\cos mθ_0 + x_0\sin mθ_0 \\
                x_{d/2+1}\cos mθ_1 + x_0\sin mθ_1 \\
                \vdots \\
                x_{d-1}\cos mθ_{d/2-1} + x_{d-1}\sin mθ_{d/2-1} \\
                \end{pmatrix}
            </d-math>
            <p>The angle of rotation, <em>θ<sub>i</sub></em> is defined as follows, where <em>d</em> is the dimension of
                the attention head:</p>
            <d-math>
                θ<sub>i</sub> = base<sup>-2(i-1)/d</sup>, i \in [1,2,...,d/2]
            </d-math>
            <p>How does this look? When moving the same distance, vectors in some dimensions rotate faster than vectors
                in other dimensions.</p>
            <img src="assets/images/rotation_speed.jpeg" alt="Rotation Speed">
        </ol>

        <h3>Attention (MHA, MQA, GQA)</h3>

        <h2>Optimized Operations</h2>

        <h3>Flash Attention 1&2&3</h3>

        <h3>Fused Kernels</h3>

        <h2>III – Training Recipe</h2>

        <h3>Batch Size</h3>

        <h3>Initialization + rescaling activations inside the model</h3>

        <h3>Numerical Precision</h3>

        <h4>FP16/BF16/FP8</h4>

        <p>@Phuc Nguyen?</p>

        <h3>Long Context Training</h3>

        <h3>Evaluation</h3>

        <p>@Haojun Zhao</p>

        <h3>Infini-Attention</h3>

        <p>@Phuc Nguyen</p>

        <h3>Ring Attention</h3>

        <p>@Haojun Zhao</p>

        <h3>RoPE scaling / Yarn</h3>

        <p>@Haojun Zhao maybe?</p>

        <h2>References</h2>

        <ul>
            <li>Harm's posts:
                <ul>
                    <li><a
                            href="https://www.harmdevries.com/post/context-length/">https://www.harmdevries.com/post/context-length/</a>
                    </li>
                    <li><a
                            href="https://www.harmdevries.com/post/model-size-vs-compute-overhead/">https://www.harmdevries.com/post/model-size-vs-compute-overhead/</a>
                    </li>
                </ul>
            </li>
            <li>Stas' guides:
                <ul>
                    <li><a href="https://github.com/stas00/ml-engineering">https://github.com/stas00/ml-engineering</a>
                    </li>
                    <li><a
                            href="https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md">https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md</a>
                    </li>
                </ul>
            </li>
            <li>data parallel: <a
                    href="https://siboehm.com/articles/22/data-parallel-training">https://siboehm.com/articles/22/data-parallel-training</a>
            </li>
            <li>ZeRO: <a href="https://arxiv.org/abs/1910.02054">https://arxiv.org/abs/1910.02054</a></li>
            <li>TP/SP + Selective Recomputation: <a
                    href="https://arxiv.org/abs/2205.05198">https://arxiv.org/abs/2205.05198</a></li>
        </ul>
        <h2>Conclusion and looking forward</h2>
        <p>Through our open science efforts we hope to keep shining a light on the black box that is the training of
            high performance large language models as well as to give every model trainer the ability to create
            state-of-the-art LLMs. We are excited to continue iterating on FineWeb and to release increasingly better
            filtered subsets of web data, in a fully open and reproducible manner.</p>
        <p>In the short term, we are looking forward to applying the learnings from (English) FineWeb to other
            languages. While English currently dominates the LLM landscape, we believe that making high quality web data
            in other languages as accessible as possible would be incredibly impactful.</p>
        <p>In a nutshell: the future is bright and exciting for studying the science of creating datasets at scale and
            in the open 🤗.</p>
    </d-article>

    <d-appendix>
        <d-bibliography src="bibliography.bib"></d-bibliography>
        <style>
            d-appendix .citation {
                font-size: 11px;
                line-height: 15px;
                border-left: 1px solid rgba(0, 0, 0, 0.1);
                padding-left: 18px;
                border: 1px solid rgba(0, 0, 0, 0.1);
                background: rgba(0, 0, 0, 0.02);
                padding: 10px 18px;
                border-radius: 3px;
                color: rgba(150, 150, 150, 1);
                overflow: hidden;
                margin-top: -12px;
                white-space: pre-wrap;
                word-wrap: break-word;
            }
        </style>

        <h3 id="citation">Citation</h3>
        <p>For attribution in academic contexts, please cite this work as</p>
        <pre
            class="citation short">Penedo, et al., "The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale", 2024.</pre>
        <p>BibTeX citation</p>
        <pre class="citation long">@misc{penedo2024finewebdatasetsdecantingweb,
      title={The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale},
      author={Guilherme Penedo and Hynek Kydlíček and Loubna Ben allal and Anton Lozhkov and Margaret Mitchell and Colin Raffel and Leandro Von Werra and Thomas Wolf},
      year={2024},
      eprint={2406.17557},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
      url={https://arxiv.org/abs/2406.17557},
}</pre>
    </d-appendix>

    <script>
        const article = document.querySelector('d-article');
        const toc = document.querySelector('d-contents');
        if (toc) {
            const headings = article.querySelectorAll('h2, h3, h4');
            let ToC = `<nav role="navigation" class="l-text figcaption"><h3>Table of contents</h3>`;
            let prevLevel = 0;

            for (const el of headings) {
                // should element be included in TOC?
                const isInTitle = el.parentElement.tagName == 'D-TITLE';
                const isException = el.getAttribute('no-toc');
                if (isInTitle || isException) continue;
                el.setAttribute('id', el.textContent.toLowerCase().replaceAll(" ", "_"))
                const link = '<a target="_self" href="' + '#' + el.getAttribute('id') + '">' + el.textContent + '</a>';

                const level = el.tagName === 'H2' ? 0 : (el.tagName === 'H3' ? 1 : 2);
                while (prevLevel < level) {
                    ToC += '<ul>'
                    prevLevel++;
                }
                while (prevLevel > level) {
                    ToC += '</ul>'
                    prevLevel--;
                }
                if (level === 0)
                    ToC += '<div>' + link + '</div>';
                else
                    ToC += '<li>' + link + '</li>';
            }

            while (prevLevel > 0) {
                ToC += '</ul>'
                prevLevel--;
            }
            ToC += '</nav>';
            toc.innerHTML = ToC;
            toc.setAttribute('prerendered', 'true');
            const toc_links = document.querySelectorAll('d-contents > nav a');

            window.addEventListener('scroll', (_event) => {
                if (typeof (headings) != 'undefined' && headings != null && typeof (toc_links) != 'undefined' && toc_links != null) {
                    // Then iterate forwards, on the first match highlight it and break
                    find_active: {
                        for (let i = headings.length - 1; i >= 0; i--) {
                            if (headings[i].getBoundingClientRect().top - 50 <= 0) {
                                if (!toc_links[i].classList.contains("active")) {
                                    toc_links.forEach((link, _index) => {
                                        link.classList.remove("active");
                                    });
                                    toc_links[i].classList.add('active');
                                }
                                break find_active;
                            }
                        }
                        toc_links.forEach((link, _index) => {
                            link.classList.remove("active");
                        });
                    }
                }
            });
        }
    </script>

</body>

</html>