Spaces:
Running
Running
File size: 10,973 Bytes
5f67cc3 c68510e 4921bbf c68510e 4921bbf d51b632 4921bbf d51b632 5f67cc3 4921bbf 5f67cc3 d51b632 5f67cc3 5a41adf 5f67cc3 d51b632 5f67cc3 d51b632 5f67cc3 9d879a4 0b99db3 9d879a4 5f67cc3 1a15aaa 3f50411 4921bbf 5f67cc3 1a15aaa 5a41adf 1a15aaa 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 9d879a4 5f67cc3 0b99db3 5f67cc3 d51b632 5f67cc3 5a41adf 5f67cc3 d51b632 5f67cc3 5a41adf 5f67cc3 9a970ef 5f67cc3 4921bbf 5f67cc3 4921bbf 5f67cc3 c68510e 4921bbf 5f67cc3 c68510e 9d879a4 c68510e 9d879a4 c68510e 9d879a4 c68510e 9d879a4 c68510e 9d879a4 c68510e 9d879a4 c68510e 4921bbf 5f67cc3 c68510e 5f67cc3 c68510e 4921bbf 5f67cc3 c68510e 5f67cc3 c68510e 4921bbf 9a970ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import matplotlib.pyplot as plt
import numpy as np
import functools
@functools.lru_cache(maxsize=None)
def get_num_hidden_layers_in_pp(hidden_size, num_layers, vocab_size, intermediate_size, num_attention_heads, pp_size):
if pp_size == 1:
return num_layers
# Get list of pipeline blocks and their costs
pipeline_blocks = []
block_costs = []
# Embedding layer (treated as zero cost in the original implementation)
pipeline_blocks.append("embedding")
block_costs.append(0)
# Decoder layers
decoder_cost = (4 * num_attention_heads * (hidden_size//num_attention_heads) * hidden_size +
3 * intermediate_size * hidden_size)
for _ in range(num_layers):
pipeline_blocks.append("decoder")
block_costs.append(decoder_cost)
# LM head
pipeline_blocks.append("lm_head")
block_costs.append(vocab_size * hidden_size)
# Now follow the same logic as the original code
total_cost = sum(block_costs)
target_cost_per_rank = total_cost / pp_size
blocks_in_rank0 = 0
current_cost = 0
for block_idx, block_cost in enumerate(block_costs):
current_cost += block_cost
blocks_in_rank0 += 1
# Check if we should move to next rank
remaining_ranks = pp_size - 1 # -1 because we're calculating for rank 0
remaining_nonzero_blocks = sum(1 for c in block_costs[block_idx+1:] if c > 0)
if (remaining_ranks > 0 and remaining_nonzero_blocks <= remaining_ranks) or (current_cost >= target_cost_per_rank):
break
num_hidden_layers_in_pp = blocks_in_rank0 - 1 # We exclude first rank as it's the embedding layer
return num_hidden_layers_in_pp
@functools.lru_cache(maxsize=None)
def calculate_memory_components(
hidden_size, num_attention_heads, num_key_value_heads, num_layers, vocab_size, intermediate_size,
seq_len, mbs, batch_accum, tp, pp, dp, zero_stage,
tie_word_embeddings, full_checkpointing=False
):
# Calculate base components first
if pp == 1:
num_hidden_layers_in_pp = num_layers
else:
num_hidden_layers_in_pp = get_num_hidden_layers_in_pp(hidden_size, num_layers, vocab_size, intermediate_size, num_attention_heads, pp)
# Model BF16 calculation
vocab_embeddings = vocab_size * hidden_size * (2 if (not tie_word_embeddings and pp==1) else 1)
layer_params = (
(hidden_size * hidden_size * (1 + 2*num_key_value_heads/num_attention_heads)) # qkv_proj
+ (hidden_size * hidden_size) # out_proj
+ (hidden_size * 2 * intermediate_size) # gate_up_proj
+ (intermediate_size * hidden_size) # down_proj
)
model_bf16_full = (vocab_embeddings + num_hidden_layers_in_pp * layer_params) * (2 / 1024 / 1024) / tp
# Calculate number of parameters in billions
num_params_in_B = (vocab_embeddings + num_layers*layer_params) / 1e9
# Adjust model components based on ZeRO stage
if zero_stage == 3:
# In ZeRO-3, model parameters are sharded across dp ranks
model_bf16 = model_bf16_full / dp
fp32_params = 2 * model_bf16
fp32_grads = 2 * model_bf16
optimstates = 4 * model_bf16
# Additional communication buffers for ZeRO-3
zero3_buffers = 2 * model_bf16 # For parameter gathering during forward/backward
else:
# For ZeRO-0/1/2
dp_if_zero = 1 if zero_stage == 0 else dp
model_bf16 = model_bf16_full
fp32_params = 2 * model_bf16 / dp_if_zero
fp32_grads = 2 * model_bf16
optimstates = 4 * model_bf16 / dp_if_zero
zero3_buffers = 0
use_ddp = zero_stage == 0 and dp > 1
ddp_grads_buffers = model_bf16 if use_ddp else 0
overhead = 72 + 32 * mbs
# Activations calculation with FSDP checkpointing support
is_mha = num_key_value_heads == num_attention_heads
decoder_layer_mib = (seq_len * mbs * hidden_size/tp) * (2/1024/1024) * (4*intermediate_size/hidden_size + 6 + 2*num_key_value_heads/num_attention_heads + 2)
if pp > 1:
activs = min(pp, batch_accum) * num_hidden_layers_in_pp * decoder_layer_mib
else:
cast_to_fp32 = sharded_cross_entropy = seq_len * mbs * vocab_size * (2 / 1024 / 1024) * 2 / tp
base_activs = num_layers * decoder_layer_mib + cast_to_fp32 + sharded_cross_entropy
# Apply activation reduction for FSDP checkpointing in ZeRO-3
if zero_stage == 3 and full_checkpointing:
activs = base_activs / dp # Activation memory is reduced by dp factor with checkpointing
else:
activs = base_activs
# Calculate aggregate metrics
memory_usage_after_optimstates = (
model_bf16 +
fp32_params +
fp32_grads +
optimstates +
ddp_grads_buffers +
zero3_buffers +
overhead
)
memory_usage_before_optimstates = (
model_bf16 +
fp32_params +
fp32_grads +
ddp_grads_buffers +
zero3_buffers
)
memory_usage_peak_tbi = (
model_bf16 +
fp32_params +
fp32_grads +
optimstates +
ddp_grads_buffers +
zero3_buffers +
overhead +
activs
)
return {
"Components": {
"Model BF16": model_bf16,
"FP32 Parameters": fp32_params,
"FP32 Gradients": fp32_grads,
"Optimizer States": optimstates,
"DDP Gradient Buffers": ddp_grads_buffers,
"ZeRO-3 Buffers": zero3_buffers,
"Overhead": overhead,
"Activations": activs,
},
"Aggregates": {
"Memory Before Optimizer States": memory_usage_before_optimstates,
"Memory After Optimizer States": memory_usage_after_optimstates,
"Peak Memory (TBI)": memory_usage_peak_tbi
}
}
def plot_memory_breakdown(
hidden_size, num_attention_heads, num_key_value_heads, num_layers, vocab_size, intermediate_size,
seq_len, mbs, batch_accum, tp, pp, dp, zero_stage,
tie_word_embeddings, full_checkpointing=False
):
results = calculate_memory_components(
hidden_size, num_attention_heads, num_key_value_heads, num_layers, vocab_size, intermediate_size,
seq_len, mbs, batch_accum, tp, pp, dp, zero_stage,
tie_word_embeddings, full_checkpointing
)
memory_usage_peak_tbi = results["Aggregates"]["Peak Memory (TBI)"]
# Create figure for components plot
plt.close('all')
fig1 = plt.figure(figsize=(10, 5))
ax1 = fig1.add_subplot(1, 1, 1)
# Plot components
components = results["Components"]
names = list(components.keys())
values = list(components.values())
colors = plt.cm.Set3(np.linspace(0, 1, len(components)))
color_map = dict(zip(names, colors))
bars1 = ax1.bar(range(len(components)), values, color=colors)
# Add value labels with better positioning
for bar in bars1:
height = bar.get_height()
ax1.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.1f} MiB',
ha='center', va='bottom',
rotation=0) # Remove rotation for better readability
# Customize the first plot
ax1.set_xticks(range(len(components)))
ax1.set_xticklabels(names, rotation=45, ha='right')
ax1.set_ylabel('Memory (MiB)')
ax1.set_title('Memory Component Breakdown', pad=20)
plt.tight_layout()
# Create figure for timeline plot
fig2 = plt.figure(figsize=(10, 6))
ax2 = fig2.add_subplot(1, 1, 1)
# Define timeline steps and their components
c = results["Components"]
timeline_steps = {
"Model Init": [
("Model BF16", c["Model BF16"]),
("DDP Gradient Buffers", c["DDP Gradient Buffers"]),
("ZeRO-3 Buffers", c["ZeRO-3 Buffers"]),
],
"Gradient Accumulator Init": [
("Model BF16", c["Model BF16"]),
("DDP Gradient Buffers", c["DDP Gradient Buffers"]),
("ZeRO-3 Buffers", c["ZeRO-3 Buffers"]),
("FP32 Parameters", c["FP32 Parameters"]),
("FP32 Gradients", c["FP32 Gradients"])
],
"Fwd-Bwd Peak": [
("Model BF16", c["Model BF16"]),
("DDP Gradient Buffers", c["DDP Gradient Buffers"]),
("ZeRO-3 Buffers", c["ZeRO-3 Buffers"]),
("FP32 Parameters", c["FP32 Parameters"]),
("FP32 Gradients", c["FP32 Gradients"]),
("Activations", c["Activations"])
],
"Optimizer Step": [
("Model BF16", c["Model BF16"]),
("ZeRO-3 Buffers", c["ZeRO-3 Buffers"]),
("FP32 Parameters", c["FP32 Parameters"]),
("FP32 Gradients", c["FP32 Gradients"]),
("Optimizer States", c["Optimizer States"])
],
"2nd Fwd-Bwd Peak": [
("Model BF16", c["Model BF16"]),
("ZeRO-3 Buffers", c["ZeRO-3 Buffers"]),
("FP32 Parameters", c["FP32 Parameters"]),
("FP32 Gradients", c["FP32 Gradients"]),
("Optimizer States", c["Optimizer States"]),
("DDP Gradient Buffers", c["DDP Gradient Buffers"]),
("Activations", c["Activations"])
],
"2nd Optimizer Step": [
("Model BF16", c["Model BF16"]),
("ZeRO-3 Buffers", c["ZeRO-3 Buffers"]),
("FP32 Parameters", c["FP32 Parameters"]),
("FP32 Gradients", c["FP32 Gradients"]),
("Optimizer States", c["Optimizer States"]),
("DDP Gradient Buffers", c["DDP Gradient Buffers"])
]
}
# Plot timeline
x = range(len(timeline_steps))
bottom = np.zeros(len(timeline_steps))
for component in c.keys():
heights = []
for step_components in timeline_steps.values():
height = 0
for comp_name, comp_value in step_components:
if comp_name == component:
height = comp_value
heights.append(height)
ax2.bar(x, heights, bottom=bottom, label=component, color=color_map[component])
bottom += heights
# Customize the timeline plot
ax2.set_xticks(x)
ax2.set_xticklabels(timeline_steps.keys(), rotation=45, ha='right')
ax2.set_ylabel('Memory (MiB)')
ax2.set_title('Memory Timeline', pad=20)
# Add total memory labels on top of each bar
for i, total in enumerate(bottom):
ax2.text(i, total, f'{total:.1f} MiB', ha='center', va='bottom')
# Adjust layout
plt.tight_layout()
# Set y-axis limit
max_y_value = max(bottom)
ax2.set_ylim(0, max(80000, max_y_value))
# Add legend below the plot
# plt.subplots_adjust(bottom=0.8)
ax2.legend(loc='lower center', bbox_to_anchor=(0.5, -1.5), ncol=3)
return fig1, fig2, memory_usage_peak_tbi
|