Spaces:
Running
Running
File size: 11,894 Bytes
5f67cc3 2fa84c8 5f67cc3 2fa84c8 5f67cc3 2fa84c8 5a41adf 2fa84c8 1a15aaa 5a41adf 2fa84c8 5f67cc3 2fa84c8 5f67cc3 2fa84c8 5f67cc3 c96b379 0b99db3 4e75254 0b99db3 5f67cc3 0b99db3 5f67cc3 5a41adf 5f67cc3 c96b379 5f67cc3 0b99db3 c96b379 5f67cc3 9553b06 5f67cc3 2fa84c8 5f67cc3 2fa84c8 5f67cc3 2fa84c8 5f67cc3 2fa84c8 5f67cc3 2fa84c8 5f67cc3 2fa84c8 9d879a4 5a41adf 5f67cc3 9553b06 5f67cc3 2fa84c8 5a41adf 2fa84c8 5f67cc3 2fa84c8 1a15aaa 5a41adf 2fa84c8 5f67cc3 5357354 1a15aaa 5a41adf 5357354 2fa84c8 5f67cc3 d51b632 5f67cc3 5a41adf 5f67cc3 9553b06 5f67cc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import matplotlib.pyplot as plt
import yaml
import json
from pathlib import Path
import io
from utils import calculate_memory_components, plot_memory_breakdown
def load_config_from_content(content):
try:
# Try parsing as JSON first
try:
config = json.loads(content)
# Check if this is a multimodal model with text_config
if 'text_config' in config:
# Use text_config for model parameters
text_config = config['text_config']
return {
'hidden_size': text_config['hidden_size'],
'num_layers': text_config['num_hidden_layers'],
'vocab_size': config.get('vocab_size', 256000), # Default for multimodal models
'intermediate_size': text_config['intermediate_size'],
'seq_len': 2048, # Default value since not in config
'mbs': 1, # Default value
'batch_accum': 1, # Default value
'tp': 1, # Default value
'pp': 1, # Default value
'dp': 1, # Default value
'zero_stage': 0, # Default value
'tie_word_embeddings': config.get('tie_word_embeddings', True),
'num_attention_heads': text_config['num_attention_heads'],
'num_key_value_heads': text_config.get('num_key_value_heads', text_config['num_attention_heads']),
'full_checkpointing': False # Default value
}
else:
# Original code for non-multimodal models
return {
'hidden_size': config['hidden_size'],
'num_layers': config['num_hidden_layers'],
'vocab_size': config['vocab_size'],
'intermediate_size': config['intermediate_size'],
'seq_len': 2048, # Default value since not in config
'mbs': 1, # Default value
'batch_accum': 1, # Default value
'tp': 1, # Default value
'pp': 1, # Default value
'dp': 1, # Default value
'zero_stage': 0, # Default value
'tie_word_embeddings': config.get('tie_word_embeddings', True),
'num_attention_heads': config['num_attention_heads'],
'num_key_value_heads': config.get('num_key_value_heads', config['num_attention_heads']),
'full_checkpointing': False # Default value
}
except json.JSONDecodeError:
# If not JSON, try YAML
config = yaml.safe_load(content)
# Extract relevant parameters from YAML config
model_config = config['model']['model_config']
parallelism = config['parallelism']
tokens = config['tokens']
optimizer = config['optimizer']
return {
'hidden_size': model_config['hidden_size'],
'num_layers': model_config['num_hidden_layers'],
'vocab_size': model_config['vocab_size'],
'intermediate_size': model_config['intermediate_size'],
'seq_len': tokens['sequence_length'],
'mbs': tokens['micro_batch_size'],
'batch_accum': tokens['batch_accumulation_per_replica'],
'tp': parallelism['tp'],
'pp': parallelism['pp'],
'dp': parallelism['dp'],
'zero_stage': optimizer['zero_stage'],
'tie_word_embeddings': model_config['tie_word_embeddings'],
'num_attention_heads': model_config['num_attention_heads'],
'num_key_value_heads': model_config.get('num_key_value_heads', model_config['num_attention_heads']),
'full_checkpointing': optimizer.get('full_checkpointing', False) # Renamed from fsdp_checkpointing
}
except Exception as e:
raise gr.Error(f"Error parsing configuration: {str(e)}")
def load_config_from_yaml_file(yaml_path):
if not yaml_path:
return None
with open(yaml_path.name, 'r') as f:
return load_config_from_content(f.read())
def format_config_display(config):
if not config:
return "No configuration loaded"
# Calculate number of parameters
vocab_embeddings = config['vocab_size'] * config['hidden_size'] * (1 if config['tie_word_embeddings'] else 2)
layer_params = (
(config['hidden_size'] * config['hidden_size'] * (1 + 2*config['num_key_value_heads']/config['num_attention_heads'])) # qkv_proj
+ (config['hidden_size'] * config['hidden_size']) # out_proj
+ (config['hidden_size'] * 2 * config['intermediate_size']) # gate_up_proj
+ (config['intermediate_size'] * config['hidden_size']) # down_proj
)
total_params = (vocab_embeddings + config['num_layers'] * layer_params)
params_billions = total_params / 1_000_000_000
sections = {
"Model Architecture": [
"hidden_size", "num_layers", "vocab_size",
"intermediate_size", "tie_word_embeddings", "num_attention_heads", "num_key_value_heads",
("num_params", f"{params_billions:.2f}B") # Show params in billions
],
"Training Configuration": [
"seq_len", "mbs", "batch_accum"
],
"Parallelism": [
"tp", "pp", "dp", "zero_stage", "full_checkpointing"
]
}
output = "<div style='display: flex;'>"
for section_name, params in sections.items():
output += f"<div style='flex: 1; padding-right: 20px;'><h3>{section_name}</h3>"
for param in params:
if isinstance(param, tuple):
# Handle custom parameter display
param_name, value = param
output += f"<b>{param_name}</b>: {value}<br>"
else:
value = config.get(param, 'N/A')
output += f"<b>{param}</b>: {value}<br>"
output += "</div>"
output += "</div>"
return output
def process_yaml_and_plot(config):
if not config:
return None, None, "No configuration loaded", None
fig1, fig2, memory_usage_peak_tbi = plot_memory_breakdown(**config)
oom_prediction = "OOM" if memory_usage_peak_tbi > 75000 else "No OOM"
return fig1, fig2, format_config_display(config), oom_prediction
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Configuration Input", open=True):
config_text = gr.Textbox(
label="Paste YAML or JSON configuration",
placeholder="Paste your YAML or JSON configuration here...",
lines=10
)
config_submit = gr.Button("Calculate Memory from Config")
with gr.Accordion("Manual Configuration", open=True):
with gr.Accordion("Model Architecture", open=True):
with gr.Row():
hidden_size = gr.Number(4096, label="Hidden Size")
num_layers = gr.Number(32, label="Number of Layers")
with gr.Row():
vocab_size = gr.Number(50432, label="Vocabulary Size")
intermediate_size = gr.Number(11008, label="Intermediate Size")
with gr.Row():
num_attention_heads = gr.Number(32, label="Number of Attention Heads")
num_key_value_heads = gr.Number(32, label="Number of Key Value Heads")
tie_word_embeddings = gr.Checkbox(True, label="Tie Word Embeddings")
with gr.Accordion("Training Configuration", open=True):
with gr.Row():
seq_len = gr.Number(2048, label="Sequence Length")
mbs = gr.Number(1, label="Micro Batch Size")
batch_accum = gr.Number(1, label="Gradient Accumulation Steps")
with gr.Accordion("Parallelism", open=True):
with gr.Row():
tp = gr.Number(1, label="Tensor Parallelism")
pp = gr.Number(1, label="Pipeline Parallelism")
dp = gr.Number(1, label="Data Parallelism")
zero_stage = gr.Radio([0, 1, 2, 3], value=0, label="ZeRO Stage")
full_checkpointing = gr.Checkbox(False, label="Full Activation Checkpointing")
manual_submit = gr.Button("Calculate Memory (Manual Input)")
with gr.Column(scale=2):
config_display = gr.Markdown(label="Configuration Values")
oom_display = gr.Text(label="OOM Prediction")
plot1 = gr.Plot(label="Memory Component Breakdown")
plot2 = gr.Plot(label="Aggregate Memory Metrics")
# Handle config text input
config_submit.click(
lambda x: process_yaml_and_update_ui(load_config_from_content(x) if x else None),
inputs=[config_text],
outputs=[
plot1, plot2, config_display, oom_display,
hidden_size, num_attention_heads, num_key_value_heads, num_layers,
vocab_size, intermediate_size, seq_len, mbs, batch_accum,
tp, pp, dp, zero_stage, tie_word_embeddings, full_checkpointing
]
)
def process_yaml_and_update_ui(config):
if not config:
return [None, None, "No configuration loaded", None] + [gr.update() for _ in range(14)]
fig1, fig2, memory_usage_peak_tbi = plot_memory_breakdown(**config)
oom_prediction = "OOM" if memory_usage_peak_tbi > 75000 else "No OOM"
# Return values for all outputs including UI updates
return [
fig1, fig2,
format_config_display(config),
oom_prediction,
# UI component updates
config['hidden_size'],
config['num_attention_heads'],
config['num_key_value_heads'],
config['num_layers'],
config['vocab_size'],
config['intermediate_size'],
config['seq_len'],
config['mbs'],
config['batch_accum'],
config['tp'],
config['pp'],
config['dp'],
config['zero_stage'],
config['tie_word_embeddings'],
config['full_checkpointing']
]
# Handle manual input
def manual_input_to_config(*args):
config = {
'hidden_size': args[0],
'num_layers': args[3],
'vocab_size': args[4],
'intermediate_size': args[5],
'seq_len': args[6],
'mbs': args[7],
'batch_accum': args[8],
'tp': args[9],
'pp': args[10],
'dp': args[11],
'zero_stage': args[12],
'tie_word_embeddings': args[13],
'num_attention_heads': args[1],
'num_key_value_heads': args[2],
'full_checkpointing': args[14] # Renamed from fsdp_checkpointing
}
return process_yaml_and_update_ui(config)
manual_submit.click(
manual_input_to_config,
inputs=[
hidden_size, num_attention_heads, num_key_value_heads, num_layers, vocab_size, intermediate_size,
seq_len, mbs, batch_accum, tp, pp, dp, zero_stage,
tie_word_embeddings, full_checkpointing # Renamed from fsdp_checkpointing
],
outputs=[plot1, plot2, config_display, oom_display]
)
if __name__ == "__main__":
demo.launch()
|