File size: 12,547 Bytes
fe56845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""
Code from https://github.com/hassony2/torch_videovision
"""

import numbers

import random
import numpy as np
import PIL

from skimage.transform import resize, rotate
from skimage.util import pad
import torchvision

import warnings

from skimage import img_as_ubyte, img_as_float


def crop_clip(clip, min_h, min_w, h, w):
    if isinstance(clip[0], np.ndarray):
        cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip]

    elif isinstance(clip[0], PIL.Image.Image):
        cropped = [
            img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip
            ]
    else:
        raise TypeError('Expected numpy.ndarray or PIL.Image' +
                        'but got list of {0}'.format(type(clip[0])))
    return cropped


def pad_clip(clip, h, w):
    im_h, im_w = clip[0].shape[:2]
    pad_h = (0, 0) if h < im_h else ((h - im_h) // 2, (h - im_h + 1) // 2)
    pad_w = (0, 0) if w < im_w else ((w - im_w) // 2, (w - im_w + 1) // 2)

    return pad(clip, ((0, 0), pad_h, pad_w, (0, 0)), mode='edge')


def resize_clip(clip, size, interpolation='bilinear'):
    if isinstance(clip[0], np.ndarray):
        if isinstance(size, numbers.Number):
            im_h, im_w, im_c = clip[0].shape
            # Min spatial dim already matches minimal size
            if (im_w <= im_h and im_w == size) or (im_h <= im_w
                                                   and im_h == size):
                return clip
            new_h, new_w = get_resize_sizes(im_h, im_w, size)
            size = (new_w, new_h)
        else:
            size = size[1], size[0]

        scaled = [
            resize(img, size, order=1 if interpolation == 'bilinear' else 0, preserve_range=True,
                   mode='constant', anti_aliasing=True) for img in clip
            ]
    elif isinstance(clip[0], PIL.Image.Image):
        if isinstance(size, numbers.Number):
            im_w, im_h = clip[0].size
            # Min spatial dim already matches minimal size
            if (im_w <= im_h and im_w == size) or (im_h <= im_w
                                                   and im_h == size):
                return clip
            new_h, new_w = get_resize_sizes(im_h, im_w, size)
            size = (new_w, new_h)
        else:
            size = size[1], size[0]
        if interpolation == 'bilinear':
            pil_inter = PIL.Image.NEAREST
        else:
            pil_inter = PIL.Image.BILINEAR
        scaled = [img.resize(size, pil_inter) for img in clip]
    else:
        raise TypeError('Expected numpy.ndarray or PIL.Image' +
                        'but got list of {0}'.format(type(clip[0])))
    return scaled


def get_resize_sizes(im_h, im_w, size):
    if im_w < im_h:
        ow = size
        oh = int(size * im_h / im_w)
    else:
        oh = size
        ow = int(size * im_w / im_h)
    return oh, ow


class RandomFlip(object):
    def __init__(self, time_flip=False, horizontal_flip=False):
        self.time_flip = time_flip
        self.horizontal_flip = horizontal_flip

    def __call__(self, clip):
        if random.random() < 0.5 and self.time_flip:
            return clip[::-1]
        if random.random() < 0.5 and self.horizontal_flip:
            return [np.fliplr(img) for img in clip]

        return clip


class RandomResize(object):
    """Resizes a list of (H x W x C) numpy.ndarray to the final size
    The larger the original image is, the more times it takes to
    interpolate
    Args:
    interpolation (str): Can be one of 'nearest', 'bilinear'
    defaults to nearest
    size (tuple): (widht, height)
    """

    def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'):
        self.ratio = ratio
        self.interpolation = interpolation

    def __call__(self, clip):
        scaling_factor = random.uniform(self.ratio[0], self.ratio[1])

        if isinstance(clip[0], np.ndarray):
            im_h, im_w, im_c = clip[0].shape
        elif isinstance(clip[0], PIL.Image.Image):
            im_w, im_h = clip[0].size

        new_w = int(im_w * scaling_factor)
        new_h = int(im_h * scaling_factor)
        new_size = (new_w, new_h)
        resized = resize_clip(
            clip, new_size, interpolation=self.interpolation)

        return resized


class RandomCrop(object):
    """Extract random crop at the same location for a list of videos
    Args:
    size (sequence or int): Desired output size for the
    crop in format (h, w)
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            size = (size, size)

        self.size = size

    def __call__(self, clip):
        """
        Args:
        img (PIL.Image or numpy.ndarray): List of videos to be cropped
        in format (h, w, c) in numpy.ndarray
        Returns:
        PIL.Image or numpy.ndarray: Cropped list of videos
        """
        h, w = self.size
        if isinstance(clip[0], np.ndarray):
            im_h, im_w, im_c = clip[0].shape
        elif isinstance(clip[0], PIL.Image.Image):
            im_w, im_h = clip[0].size
        else:
            raise TypeError('Expected numpy.ndarray or PIL.Image' +
                            'but got list of {0}'.format(type(clip[0])))

        clip = pad_clip(clip, h, w)
        im_h, im_w = clip.shape[1:3]
        x1 = 0 if h == im_h else random.randint(0, im_w - w)
        y1 = 0 if w == im_w else random.randint(0, im_h - h)
        cropped = crop_clip(clip, y1, x1, h, w)

        return cropped


class RandomRotation(object):
    """Rotate entire clip randomly by a random angle within
    given bounds
    Args:
    degrees (sequence or int): Range of degrees to select from
    If degrees is a number instead of sequence like (min, max),
    the range of degrees, will be (-degrees, +degrees).
    """

    def __init__(self, degrees):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError('If degrees is a single number,'
                                 'must be positive')
            degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError('If degrees is a sequence,'
                                 'it must be of len 2.')

        self.degrees = degrees

    def __call__(self, clip):
        """
        Args:
        img (PIL.Image or numpy.ndarray): List of videos to be cropped
        in format (h, w, c) in numpy.ndarray
        Returns:
        PIL.Image or numpy.ndarray: Cropped list of videos
        """
        angle = random.uniform(self.degrees[0], self.degrees[1])
        if isinstance(clip[0], np.ndarray):
            rotated = [rotate(image=img, angle=angle, preserve_range=True) for img in clip]
        elif isinstance(clip[0], PIL.Image.Image):
            rotated = [img.rotate(angle) for img in clip]
        else:
            raise TypeError('Expected numpy.ndarray or PIL.Image' +
                            'but got list of {0}'.format(type(clip[0])))

        return rotated


class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation and hue of the clip
    Args:
    brightness (float): How much to jitter brightness. brightness_factor
    is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
    contrast (float): How much to jitter contrast. contrast_factor
    is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
    saturation (float): How much to jitter saturation. saturation_factor
    is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
    hue(float): How much to jitter hue. hue_factor is chosen uniformly from
    [-hue, hue]. Should be >=0 and <= 0.5.
    """

    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def get_params(self, brightness, contrast, saturation, hue):
        if brightness > 0:
            brightness_factor = random.uniform(
                max(0, 1 - brightness), 1 + brightness)
        else:
            brightness_factor = None

        if contrast > 0:
            contrast_factor = random.uniform(
                max(0, 1 - contrast), 1 + contrast)
        else:
            contrast_factor = None

        if saturation > 0:
            saturation_factor = random.uniform(
                max(0, 1 - saturation), 1 + saturation)
        else:
            saturation_factor = None

        if hue > 0:
            hue_factor = random.uniform(-hue, hue)
        else:
            hue_factor = None
        return brightness_factor, contrast_factor, saturation_factor, hue_factor

    def __call__(self, clip):
        """
        Args:
        clip (list): list of PIL.Image
        Returns:
        list PIL.Image : list of transformed PIL.Image
        """
        if isinstance(clip[0], np.ndarray):
            brightness, contrast, saturation, hue = self.get_params(
                self.brightness, self.contrast, self.saturation, self.hue)

            # Create img transform function sequence
            img_transforms = []
            if brightness is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness))
            if saturation is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation))
            if hue is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue))
            if contrast is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast))
            random.shuffle(img_transforms)
            img_transforms = [img_as_ubyte, torchvision.transforms.ToPILImage()] + img_transforms + [np.array,
                                                                                                     img_as_float]

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                jittered_clip = []
                for img in clip:
                    jittered_img = img
                    for func in img_transforms:
                        jittered_img = func(jittered_img)
                    jittered_clip.append(jittered_img.astype('float32'))
        elif isinstance(clip[0], PIL.Image.Image):
            brightness, contrast, saturation, hue = self.get_params(
                self.brightness, self.contrast, self.saturation, self.hue)

            # Create img transform function sequence
            img_transforms = []
            if brightness is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness))
            if saturation is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation))
            if hue is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue))
            if contrast is not None:
                img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast))
            random.shuffle(img_transforms)

            # Apply to all videos
            jittered_clip = []
            for img in clip:
                for func in img_transforms:
                    jittered_img = func(img)
                jittered_clip.append(jittered_img)

        else:
            raise TypeError('Expected numpy.ndarray or PIL.Image' +
                            'but got list of {0}'.format(type(clip[0])))
        return jittered_clip


class AllAugmentationTransform:
    def __init__(self, resize_param=None, rotation_param=None, flip_param=None, crop_param=None, jitter_param=None):
        self.transforms = []

        if flip_param is not None:
            self.transforms.append(RandomFlip(**flip_param))

        if rotation_param is not None:
            self.transforms.append(RandomRotation(**rotation_param))

        if resize_param is not None:
            self.transforms.append(RandomResize(**resize_param))

        if crop_param is not None:
            self.transforms.append(RandomCrop(**crop_param))

        if jitter_param is not None:
            self.transforms.append(ColorJitter(**jitter_param))

    def __call__(self, clip):
        for t in self.transforms:
            clip = t(clip)
        return clip