File size: 3,694 Bytes
cdead31
 
 
 
2ff0900
10aeea5
cdead31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb074f
cdead31
a78f57a
69a6745
cdead31
 
4eb074f
cdead31
a78f57a
69a6745
cdead31
3e9263a
 
1ba0227
cdead31
 
 
69a6745
 
cdead31
 
 
 
 
 
 
 
 
 
075d904
d3c8b0e
10aeea5
 
2b0e5f7
10aeea5
2b0e5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff5b8d
10aeea5
7c5e3d2
10aeea5
 
4cbc8b1
273fdb4
 
 
680708f
cdead31
c343ef4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")

import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
from eval import interpolator, util
import gradio as gr

from huggingface_hub import snapshot_download

from image_tools.sizes import resize_and_crop


model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")

interpolator = interpolator.Interpolator(model, None)

ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)

def resize(width,img):
  basewidth = width
  img = Image.open(img)
  wpercent = (basewidth/float(img.size[0]))
  hsize = int((float(img.size[1])*float(wpercent)))
  img = img.resize((basewidth,hsize), Image.ANTIALIAS)
  return img
  

def resize_img(img1,img2):
 img_target_size = Image.open(img1)
 img_to_resize = resize_and_crop(
     img2, 
     (img_target_size.size[0],img_target_size.size[1]), #set width and height to match img1
     crop_origin="middle"
     )
 img_to_resize.save('resized_img2.png')

  
sketch1 = gr.Image(image_mode="RGB",
        source="canvas",
        type="file",
        shape=None,
        invert_colors=False)

sketch2 = gr.Image(image_mode="RGB",
        source="canvas",
        type="file",
        shape=None,
        invert_colors=False)

slider = gr.inputs.Slider(minimum=2,maximum=4,step=1)

        
def predict(frame1, frame2, times_to_interpolate):
   
    frame1 = resize(256,frame1)
    frame2 = resize(256,frame2)

    frame1.save("test1.png")
    frame2.save("test2.png")

    resize_img("test1.png","test2.png")
    input_frames = ["test1.png", "resized_img2.png"]

    frames = list(
        util.interpolate_recursively_from_files(
            input_frames, times_to_interpolate, interpolator))
    print(frames)  
    mediapy.write_video("out.mp4", frames, fps=24)

    # video.mp4 is a video of 9 seconds
    filename = "out.mp4"
        
    cap = cv2.VideoCapture(filename)
    cap.set(cv2.CAP_PROP_POS_AVI_RATIO,0)
    frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frameWidth = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frameHeight = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    videoFPS = int(cap.get(cv2.CAP_PROP_FPS))
    
    print (f"frameCount: {frameCount}")
    print (f"frameWidth: {frameWidth}")
    print (f"frameHeight: {frameHeight}")
    print (f"videoFPS: {videoFPS}")
    
    buf = np.empty((
        frameCount,
        frameHeight,
        frameWidth,
        3), np.dtype('uint8'))
    
    fc = 0
    ret = True
    
    while (fc < frameCount):
        ret, buf[fc] = cap.read()
        fc += 1
    
    cap.release()
    videoArray = buf
    
    print (f"DURATION: {frameCount/videoFPS}")
    print (videoArray)
    
    return "out.mp4", videoArray
    
    
    
title="sketch-frame-interpolation"
description="This is a fork of the Gradio demo for FILM: Frame Interpolation for Large Scene Motion from @akhaliq, but using sketches instead of images. This could be very useful for the animation industry :) <br /> To use it, simply draw your sketches and add the times to interpolate number. Read more at the links below."
article = "<p style='text-align: center'><a href='https://film-net.github.io/' target='_blank'>FILM: Frame Interpolation for Large Motion</a> | <a href='https://github.com/google-research/frame-interpolation' target='_blank'>Github Repo</a></p>"
custom_css = "style.css"

gr.Interface(predict,[sketch1,sketch2,slider],outputs=[gr.Video(label="video output"),gr.Gallery(label="list of frames output")],title=title,description=description,article=article,css=custom_css).launch(enable_queue=True)