Spaces:
Runtime error
Runtime error
File size: 11,691 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
"""Groq API integration with streaming and optimizations."""
import os
import logging
import asyncio
from typing import Dict, Any, Optional, List, AsyncGenerator, Union
import groq
from datetime import datetime
import json
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor
from .base import ReasoningStrategy, StrategyResult
logger = logging.getLogger(__name__)
@dataclass
class GroqConfig:
"""Configuration for Groq models."""
model_name: str
max_tokens: int
temperature: float
top_p: float
top_k: Optional[int] = None
presence_penalty: float = 0.0
frequency_penalty: float = 0.0
stop_sequences: Optional[List[str]] = None
chunk_size: int = 1024
retry_attempts: int = 3
retry_delay: float = 1.0
class GroqStrategy(ReasoningStrategy):
"""Enhanced reasoning strategy using Groq's API with streaming and optimizations."""
def __init__(self, api_key: Optional[str] = None):
"""Initialize Groq strategy."""
super().__init__()
self.api_key = api_key or os.getenv("GROQ_API_KEY")
if not self.api_key:
raise ValueError("GROQ_API_KEY must be set")
# Initialize Groq client with optimized settings
self.client = groq.Groq(
api_key=self.api_key,
timeout=30,
max_retries=3
)
# Optimized model configurations
self.model_configs = {
"mixtral": GroqConfig(
model_name="mixtral-8x7b-32768",
max_tokens=32768,
temperature=0.7,
top_p=0.9,
top_k=40,
presence_penalty=0.1,
frequency_penalty=0.1,
chunk_size=4096
),
"llama": GroqConfig(
model_name="llama2-70b-4096",
max_tokens=4096,
temperature=0.8,
top_p=0.9,
top_k=50,
presence_penalty=0.2,
frequency_penalty=0.2,
chunk_size=1024
)
}
# Initialize thread pool for parallel processing
self.executor = ThreadPoolExecutor(max_workers=4)
# Response cache
self.cache: Dict[str, Any] = {}
self.cache_ttl = 3600 # 1 hour
async def reason_stream(
self,
query: str,
context: Dict[str, Any],
model: str = "mixtral",
chunk_handler: Optional[callable] = None
) -> AsyncGenerator[str, None]:
"""
Stream reasoning results from Groq's API.
Args:
query: The query to reason about
context: Additional context
model: Model to use ('mixtral' or 'llama')
chunk_handler: Optional callback for handling chunks
"""
config = self.model_configs[model]
messages = self._prepare_messages(query, context)
try:
stream = await self.client.chat.completions.create(
model=config.model_name,
messages=messages,
temperature=config.temperature,
top_p=config.top_p,
top_k=config.top_k,
presence_penalty=config.presence_penalty,
frequency_penalty=config.frequency_penalty,
max_tokens=config.max_tokens,
stream=True
)
collected_content = []
async for chunk in stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
collected_content.append(content)
if chunk_handler:
await chunk_handler(content)
yield content
# Cache the complete response
cache_key = self._generate_cache_key(query, context, model)
self.cache[cache_key] = {
"content": "".join(collected_content),
"timestamp": datetime.now()
}
except Exception as e:
logger.error(f"Groq streaming error: {str(e)}")
yield f"Error: {str(e)}"
async def reason(
self,
query: str,
context: Dict[str, Any],
model: str = "mixtral"
) -> StrategyResult:
"""
Enhanced reasoning with Groq's API including optimizations.
Args:
query: The query to reason about
context: Additional context
model: Model to use ('mixtral' or 'llama')
"""
# Check cache first
cache_key = self._generate_cache_key(query, context, model)
cached_response = self._get_from_cache(cache_key)
if cached_response:
return self._create_result(cached_response, model, from_cache=True)
config = self.model_configs[model]
messages = self._prepare_messages(query, context)
# Implement retry logic with exponential backoff
for attempt in range(config.retry_attempts):
try:
start_time = datetime.now()
# Make API call with optimized parameters
response = await self.client.chat.completions.create(
model=config.model_name,
messages=messages,
temperature=config.temperature,
top_p=config.top_p,
top_k=config.top_k,
presence_penalty=config.presence_penalty,
frequency_penalty=config.frequency_penalty,
max_tokens=config.max_tokens,
stream=False
)
end_time = datetime.now()
# Cache successful response
self.cache[cache_key] = {
"content": response.choices[0].message.content,
"timestamp": datetime.now()
}
return self._create_result(response, model)
except Exception as e:
delay = config.retry_delay * (2 ** attempt)
logger.warning(f"Groq API attempt {attempt + 1} failed: {str(e)}")
if attempt < config.retry_attempts - 1:
await asyncio.sleep(delay)
else:
logger.error(f"All Groq API attempts failed: {str(e)}")
return self._create_error_result(str(e))
def _create_result(
self,
response: Union[Dict, Any],
model: str,
from_cache: bool = False
) -> StrategyResult:
"""Create a strategy result from response."""
if from_cache:
answer = response["content"]
confidence = 0.9 # Higher confidence for cached responses
performance_metrics = {
"from_cache": True,
"cache_age": (datetime.now() - response["timestamp"]).total_seconds()
}
else:
answer = response.choices[0].message.content
confidence = self._calculate_confidence(response)
performance_metrics = {
"latency": response.usage.total_tokens / 1000, # tokens per second
"tokens_used": response.usage.total_tokens,
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"model": self.model_configs[model].model_name
}
return StrategyResult(
strategy_type="groq",
success=True,
answer=answer,
confidence=confidence,
reasoning_trace=[{
"step": "groq_api_call",
"model": self.model_configs[model].model_name,
"timestamp": datetime.now().isoformat(),
"metrics": performance_metrics
}],
metadata={
"model": self.model_configs[model].model_name,
"from_cache": from_cache
},
performance_metrics=performance_metrics
)
def _create_error_result(self, error: str) -> StrategyResult:
"""Create an error result."""
return StrategyResult(
strategy_type="groq",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
"step": "groq_api_error",
"error": error,
"timestamp": datetime.now().isoformat()
}],
metadata={"error": error},
performance_metrics={}
)
def _generate_cache_key(
self,
query: str,
context: Dict[str, Any],
model: str
) -> str:
"""Generate a cache key."""
key_data = {
"query": query,
"context": context,
"model": model
}
return json.dumps(key_data, sort_keys=True)
def _get_from_cache(self, cache_key: str) -> Optional[Dict]:
"""Get response from cache if valid."""
if cache_key in self.cache:
cached = self.cache[cache_key]
age = (datetime.now() - cached["timestamp"]).total_seconds()
if age < self.cache_ttl:
return cached
else:
del self.cache[cache_key]
return None
def _calculate_confidence(self, response: Any) -> float:
"""Calculate confidence score from response."""
confidence = 0.8 # Base confidence
# Adjust based on token usage and model behavior
if hasattr(response, 'usage'):
completion_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens
# Length-based adjustment
if completion_tokens < 10:
confidence *= 0.8 # Reduce confidence for very short responses
elif completion_tokens > 100:
confidence *= 1.1 # Increase confidence for detailed responses
# Token efficiency adjustment
token_efficiency = completion_tokens / total_tokens
if token_efficiency > 0.5:
confidence *= 1.1 # Good token efficiency
# Response completeness check
if hasattr(response.choices[0], 'finish_reason'):
if response.choices[0].finish_reason == "stop":
confidence *= 1.1 # Natural completion
elif response.choices[0].finish_reason == "length":
confidence *= 0.9 # Truncated response
return min(1.0, max(0.0, confidence)) # Ensure between 0 and 1
def _prepare_messages(
self,
query: str,
context: Dict[str, Any]
) -> List[Dict[str, str]]:
"""Prepare messages for the Groq API."""
messages = []
# Add system message if provided
if "system_message" in context:
messages.append({
"role": "system",
"content": context["system_message"]
})
# Add chat history if provided
if "chat_history" in context:
messages.extend(context["chat_history"])
# Add the current query
messages.append({
"role": "user",
"content": query
})
return messages
|