File size: 19,051 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef1144
dcb2a99
 
 
 
 
 
 
798eb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798eb17
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef1144
 
dcb2a99
 
 
 
 
 
 
 
 
 
798eb17
 
dcb2a99
798eb17
 
 
 
 
dcb2a99
 
 
 
 
 
 
798eb17
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
798eb17
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
798eb17
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
798eb17
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
798eb17
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798eb17
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
798eb17
 
3ef1144
798eb17
3ef1144
 
 
1671ec3
3ef1144
 
 
 
1671ec3
 
 
 
3ef1144
1671ec3
798eb17
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
"""
Advanced Team Management System
-----------------------------
Manages specialized teams of agents that work together towards common goals:
1. Team A: Coders (App/Software Developers)
2. Team B: Business (Entrepreneurs)
3. Team C: Research (Deep Online Research)
4. Team D: Crypto & Sports Trading

Features:
- Cross-team collaboration
- Goal alignment
- Resource sharing
- Synchronized execution
"""

from typing import Dict, List, Optional, Set, Union, TypeVar, Any
from dataclasses import dataclass, field
from enum import Enum
import asyncio
from datetime import datetime
import uuid
from collections import defaultdict

from orchestrator import AgentOrchestrator, TaskPriority, AgentRole, AgentState
from reasoning import UnifiedReasoningEngine

# Agent capabilities and personality types
class AgentCapability(Enum):
    """Core capabilities of agents."""
    REASONING = "reasoning"
    LEARNING = "learning"
    EXECUTION = "execution"
    COORDINATION = "coordination"
    MONITORING = "monitoring"

class AgentPersonality(Enum):
    """Different personality types for agents."""
    ANALYTICAL = "analytical"
    CREATIVE = "creative"
    PRAGMATIC = "pragmatic"
    COLLABORATIVE = "collaborative"
    PROACTIVE = "proactive"
    CAUTIOUS = "cautious"

class TeamType(Enum):
    """Specialized team types."""
    CODERS = "coders"
    BUSINESS = "business"
    RESEARCH = "research"
    TRADERS = "traders"

class TeamObjective(Enum):
    """Types of team objectives."""
    SOFTWARE_DEVELOPMENT = "software_development"
    BUSINESS_OPPORTUNITY = "business_opportunity"
    MARKET_RESEARCH = "market_research"
    TRADING_STRATEGY = "trading_strategy"
    CROSS_TEAM_PROJECT = "cross_team_project"

@dataclass
class TeamProfile:
    """Team profile and capabilities."""
    id: str
    type: TeamType
    name: str
    primary_objective: TeamObjective
    secondary_objectives: List[TeamObjective]
    agent_count: int
    expertise_areas: List[str]
    collaboration_score: float = 0.0
    success_rate: float = 0.0
    active_projects: int = 0

@dataclass
class CollaborationLink:
    """Defines collaboration between teams."""
    team_a_id: str
    team_b_id: str
    strength: float
    active_projects: int
    last_interaction: datetime
    success_rate: float

class TeamManager:
    """Manages specialized teams and their collaboration."""
    
    def __init__(self, orchestrator: AgentOrchestrator):
        self.orchestrator = orchestrator
        self.teams: Dict[str, TeamProfile] = {}
        self.agents: Dict[str, Dict[str, 'Agent']] = {}  # team_id -> {agent_id -> Agent}
        self.collaboration_network: Dict[str, CollaborationLink] = {}
        self.shared_objectives: Dict[str, Set[str]] = defaultdict(set)  # objective_id -> set of team_ids
        self.lock = asyncio.Lock()
        
        # Initialize specialized teams
        self._init_teams()

    def _init_teams(self):
        """Initialize specialized teams."""
        team_configs = {
            TeamType.CODERS: {
                "name": "Development Team",
                "primary": TeamObjective.SOFTWARE_DEVELOPMENT,
                "secondary": [
                    TeamObjective.BUSINESS_OPPORTUNITY,
                    TeamObjective.MARKET_RESEARCH
                ],
                "expertise": [
                    "full_stack_development",
                    "cloud_architecture",
                    "ai_ml",
                    "blockchain",
                    "mobile_development"
                ]
            },
            TeamType.BUSINESS: {
                "name": "Business Strategy Team",
                "primary": TeamObjective.BUSINESS_OPPORTUNITY,
                "secondary": [
                    TeamObjective.MARKET_RESEARCH,
                    TeamObjective.TRADING_STRATEGY
                ],
                "expertise": [
                    "market_analysis",
                    "business_strategy",
                    "digital_transformation",
                    "startup_innovation",
                    "product_management"
                ]
            },
            TeamType.RESEARCH: {
                "name": "Research & Analysis Team",
                "primary": TeamObjective.MARKET_RESEARCH,
                "secondary": [
                    TeamObjective.BUSINESS_OPPORTUNITY,
                    TeamObjective.TRADING_STRATEGY
                ],
                "expertise": [
                    "deep_research",
                    "data_analysis",
                    "trend_forecasting",
                    "competitive_analysis",
                    "technology_assessment"
                ]
            },
            TeamType.TRADERS: {
                "name": "Trading & Investment Team",
                "primary": TeamObjective.TRADING_STRATEGY,
                "secondary": [
                    TeamObjective.MARKET_RESEARCH,
                    TeamObjective.BUSINESS_OPPORTUNITY
                ],
                "expertise": [
                    "crypto_trading",
                    "sports_betting",
                    "risk_management",
                    "market_timing",
                    "portfolio_optimization"
                ]
            }
        }
        
        for team_type, config in team_configs.items():
            team_id = str(uuid.uuid4())
            self.teams[team_id] = TeamProfile(
                id=team_id,
                type=team_type,
                name=config["name"],
                primary_objective=config["primary"],
                secondary_objectives=config["secondary"],
                agent_count=5,  # Default size
                expertise_areas=config["expertise"]
            )
            self.agents[team_id] = {}

    async def initialize_team_agents(self):
        """Initialize agents for each team with appropriate roles and capabilities."""
        for team_id, team in self.teams.items():
            await self._create_team_agents(team_id)
            await self._establish_collaboration_links(team_id)

    async def _create_team_agents(self, team_id: str):
        """Create specialized agents for a team."""
        team = self.teams[team_id]
        
        # Define agent configurations based on team type
        agent_configs = self._get_agent_configs(team.type)
        
        for config in agent_configs:
            agent_id = await self.orchestrator.create_agent(
                role=config["role"],
                capabilities=config["capabilities"]
            )
            
            agent = Agent(
                profile=config["profile"],
                reasoning_engine=self.orchestrator.reasoning_engine,
                meta_learning=self.orchestrator.meta_learning,
                config=config.get("config", {})
            )
            
            self.agents[team_id][agent_id] = agent

    def _get_agent_configs(self, team_type: TeamType) -> List[Dict]:
        """Get agent configurations based on team type."""
        base_configs = [
            {
                "role": AgentRole.COORDINATOR,
                "capabilities": [
                    AgentCapability.REASONING,
                    AgentCapability.COORDINATION
                ],
                "personality": AgentPersonality.PROACTIVE,
                "profile": {
                    "name": "Coordinator",
                    "description": "Team coordinator"
                }
            },
            {
                "role": AgentRole.EXECUTOR,
                "capabilities": [
                    AgentCapability.EXECUTION,
                    AgentCapability.LEARNING
                ],
                "personality": AgentPersonality.ANALYTICAL,
                "profile": {
                    "name": "Executor",
                    "description": "Task executor"
                }
            }
        ]
        
        # Add team-specific configurations
        if team_type == TeamType.CODERS:
            base_configs.extend([
                {
                    "role": AgentRole.EXECUTOR,
                    "capabilities": [
                        AgentCapability.EXECUTION,
                        AgentCapability.REASONING
                    ],
                    "personality": AgentPersonality.CREATIVE,
                    "expertise": ["software_development", "system_design"],
                    "profile": {
                        "name": "Developer",
                        "description": "Software developer"
                    }
                }
            ])
        elif team_type == TeamType.BUSINESS:
            base_configs.extend([
                {
                    "role": AgentRole.PLANNER,
                    "capabilities": [
                        AgentCapability.REASONING,
                        AgentCapability.LEARNING
                    ],
                    "personality": AgentPersonality.PROACTIVE,
                    "expertise": ["business_strategy", "market_analysis"],
                    "profile": {
                        "name": "Planner",
                        "description": "Business planner"
                    }
                }
            ])
        elif team_type == TeamType.RESEARCH:
            base_configs.extend([
                {
                    "role": AgentRole.MONITOR,
                    "capabilities": [
                        AgentCapability.MONITORING,
                        AgentCapability.LEARNING
                    ],
                    "personality": AgentPersonality.ANALYTICAL,
                    "expertise": ["research", "data_analysis"],
                    "profile": {
                        "name": "Researcher",
                        "description": "Researcher"
                    }
                }
            ])
        elif team_type == TeamType.TRADERS:
            base_configs.extend([
                {
                    "role": AgentRole.EXECUTOR,
                    "capabilities": [
                        AgentCapability.EXECUTION,
                        AgentCapability.REASONING
                    ],
                    "personality": AgentPersonality.CAUTIOUS,
                    "expertise": ["trading", "risk_management"],
                    "profile": {
                        "name": "Trader",
                        "description": "Trader"
                    }
                }
            ])
            
        return base_configs

    async def _establish_collaboration_links(self, team_id: str):
        """Establish collaboration links with other teams."""
        team = self.teams[team_id]
        
        for other_id, other_team in self.teams.items():
            if other_id != team_id:
                link_id = f"{min(team_id, other_id)}_{max(team_id, other_id)}"
                if link_id not in self.collaboration_network:
                    self.collaboration_network[link_id] = CollaborationLink(
                        team_a_id=team_id,
                        team_b_id=other_id,
                        strength=0.5,  # Initial collaboration strength
                        active_projects=0,
                        last_interaction=datetime.now(),
                        success_rate=0.0
                    )

    async def create_cross_team_objective(
        self,
        objective: str,
        required_teams: List[TeamType],
        priority: TaskPriority = TaskPriority.MEDIUM
    ) -> str:
        """Create an objective that requires multiple teams."""
        objective_id = str(uuid.uuid4())
        
        # Find relevant teams
        selected_teams = []
        for team_id, team in self.teams.items():
            if team.type in required_teams:
                selected_teams.append(team_id)
        
        if len(selected_teams) < len(required_teams):
            raise ValueError("Not all required teams are available")
        
        # Create shared objective
        self.shared_objectives[objective_id].update(selected_teams)
        
        # Create tasks for each team
        tasks = []
        for team_id in selected_teams:
            task_id = await self.orchestrator.submit_task(
                description=f"Team {self.teams[team_id].name} contribution to: {objective}",
                priority=priority
            )
            tasks.append(task_id)
        
        return objective_id

    async def monitor_objective_progress(self, objective_id: str) -> Dict:
        """Monitor progress of a cross-team objective."""
        if objective_id not in self.shared_objectives:
            raise ValueError("Unknown objective")
            
        team_progress = {}
        for team_id in self.shared_objectives[objective_id]:
            team = self.teams[team_id]
            team_agents = self.agents[team_id]
            
            # Calculate team progress
            active_agents = sum(1 for agent in team_agents.values() if agent.state == AgentState.BUSY)
            completion_rate = sum(agent.get_task_completion_rate() for agent in team_agents.values()) / len(team_agents)
            
            team_progress[team.name] = {
                "active_agents": active_agents,
                "completion_rate": completion_rate,
                "collaboration_score": team.collaboration_score
            }
            
        return team_progress

    async def optimize_team_collaboration(self):
        """Optimize collaboration between teams."""
        for link in self.collaboration_network.values():
            team_a = self.teams[link.team_a_id]
            team_b = self.teams[link.team_b_id]
            
            # Update collaboration strength based on:
            # 1. Number of successful joint projects
            # 2. Frequency of interaction
            # 3. Complementary expertise
            
            success_factor = link.success_rate
            interaction_factor = min((datetime.now() - link.last_interaction).days / 30.0, 1.0)
            expertise_overlap = len(
                set(team_a.expertise_areas) & set(team_b.expertise_areas)
            ) / len(set(team_a.expertise_areas) | set(team_b.expertise_areas))
            
            new_strength = (
                0.4 * success_factor +
                0.3 * (1 - interaction_factor) +
                0.3 * (1 - expertise_overlap)
            )
            
            link.strength = 0.7 * link.strength + 0.3 * new_strength

    async def get_team_recommendations(self, objective: str) -> List[TeamType]:
        """Get recommended teams for an objective based on expertise and collaboration history."""
        # Analyze objective to determine required expertise
        required_expertise = await self._analyze_objective(objective)
        
        # Score each team
        team_scores = {}
        for team_id, team in self.teams.items():
            # Calculate expertise match
            expertise_match = len(
                set(required_expertise) & set(team.expertise_areas)
            ) / len(required_expertise)
            
            # Calculate collaboration potential
            collab_potential = self._calculate_collaboration_potential(team_id)
            
            # Calculate success history
            success_history = team.success_rate
            
            # Weighted score
            score = (
                0.4 * expertise_match +
                0.3 * collab_potential +
                0.3 * success_history
            )
            
            team_scores[team.type] = score
            
        # Return sorted recommendations
        return sorted(
            team_scores.keys(),
            key=lambda x: team_scores[x],
            reverse=True
        )

    async def _analyze_objective(self, objective: str) -> List[str]:
        """Analyze an objective to determine required expertise."""
        # Use reasoning engine to analyze objective
        analysis = await self.orchestrator.reasoning_engine.reason(
            query=f"Analyze required expertise for: {objective}",
            context={
                "available_expertise": [
                    expertise
                    for team in self.teams.values()
                    for expertise in team.expertise_areas
                ]
            }
        )
        
        return analysis.get("required_expertise", [])

    def _calculate_collaboration_potential(self, team_id: str) -> float:
        """Calculate a team's collaboration potential based on history."""
        team_links = [
            link for link in self.collaboration_network.values()
            if team_id in (link.team_a_id, link.team_b_id)
        ]
        
        if not team_links:
            return 0.5
            
        return sum(link.strength for link in team_links) / len(team_links)

    async def update_team_metrics(self):
        """Update performance metrics for all teams."""
        for team_id, team in self.teams.items():
            team_agents = self.agents[team_id]
            
            # Calculate success rate
            completed_tasks = sum(
                agent.get_completed_task_count()
                for agent in team_agents.values()
            )
            total_tasks = sum(
                agent.get_total_task_count()
                for agent in team_agents.values()
            )
            team.success_rate = completed_tasks / max(1, total_tasks)
            
            # Calculate collaboration score
            team_links = [
                link for link in self.collaboration_network.values()
                if team_id in (link.team_a_id, link.team_b_id)
            ]
            team.collaboration_score = (
                sum(link.strength for link in team_links) /
                len(team_links) if team_links else 0.5
            )

class Agent:
    def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool, config: Optional[Dict[str, Any]] = None):
        self.profile = profile
        self.config = config or {}
        
        # Use provided reasoning engine or create one with config
        self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine(
            min_confidence=self.config.get('min_confidence', 0.7),
            parallel_threshold=self.config.get('parallel_threshold', 3),
            learning_rate=self.config.get('learning_rate', 0.1),
            strategy_weights=self.config.get('strategy_weights', {
                "LOCAL_LLM": 0.8,
                "CHAIN_OF_THOUGHT": 0.6,
                "TREE_OF_THOUGHTS": 0.5,
                "META_LEARNING": 0.4
            })
        )
        self.meta_learning = meta_learning
        self.state = AgentState.IDLE

    def get_task_completion_rate(self):
        # Implement task completion rate calculation
        pass

    def get_completed_task_count(self):
        # Implement completed task count calculation
        pass

    def get_total_task_count(self):
        # Implement total task count calculation
        pass