File size: 2,219 Bytes
b0a48de 4808241 b0a48de 4808241 b0a48de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import faiss
from sklearn.metrics import pairwise_distances_argmin_min
import random
from utils import *
def offline(number_of_clusters, features):
# Cluster the frames using K-Means
# K-means from sklearn
#kmeans = KMeans(n_clusters=number_of_clusters, random_state=0).fit(features)
# K-means from faiss
ncentroids = number_of_clusters
niter = 10
verbose = True
x = features
# Take the first dimension of the first element of the list
dimension = x[0].shape[0]
kmeans = faiss.Kmeans(dimension, ncentroids, niter=niter, verbose=verbose)
kmeans.train(x)
#closest, _ = pairwise_distances_argmin_min(kmeans.cluster_centers_, features)
closest, _ = pairwise_distances_argmin_min(kmeans.centroids, x)
closest_clips_frames = []
for i in sorted(closest):
for idx in range(i*8, (i+1)*8):
closest_clips_frames.append(idx)
return closest_clips_frames
def online(features, threshold):
i = 0
previous = i
clips = []
#compare the sum of squared difference between clips j and previous
for j in range(1, len(features)):
if sum_of_squared_difference(features[previous], features[j]) > threshold:
clip = []
# add frames from clip i to j-1 to the clip list
for b in range(i*8, j*8):
clip.append(b)
# randomly select 15% of the frames from the clip list
random_num = round(len(clip)*0.15)
# sort the frames in the clip list to ensure the order of the frames
random_Frames = sorted(random.sample(clip, random_num))
i = j
clips.extend(random_Frames)
previous = j
# add the last clip to the clip list
clip = []
if i==j:
for c in range(j*8, j*8+8):
clip.append(c)
random_num = round(len(clip)*0.15)
random_Frames = sorted(random.sample(clip, random_num))
else: # (i<j)
for c in range(i*8, (j+1)*8):
clip.append(c)
random_num = round(len(clip)*0.15)
random_Frames = sorted(random.sample(clip, random_num))
clips.extend(random_Frames)
return clips
|