File size: 6,363 Bytes
2c448c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""NIPS2017 "Time Domain Neural Audio Style Transfer" code repository
Parag K. Mital
"""
import glob
import numpy as np
from scipy.signal import hann
import librosa
import matplotlib
import matplotlib.pyplot as plt
import os


def limiter(signal,
            delay=40,
            threshold=0.9,
            release_coeff=0.9995,
            attack_coeff=0.9):

    delay_index = 0
    envelope = 0
    gain = 1
    delay = delay
    delay_line = np.zeros(delay)
    release_coeff = release_coeff
    attack_coeff = attack_coeff
    threshold = threshold

    for idx, sample in enumerate(signal):
        delay_line[delay_index] = sample
        delay_index = (delay_index + 1) % delay

        # calculate an envelope of the signal
        envelope = max(np.abs(sample), envelope * release_coeff)

        if envelope > threshold:
            target_gain = threshold / envelope
        else:
            target_gain = 1.0

        # have gain go towards a desired limiter gain
        gain = (gain * attack_coeff + target_gain * (1 - attack_coeff))

        # limit the delayed signal
        signal[idx] = delay_line[delay_index] * gain
    return signal


def chop(signal, hop_size=256, frame_size=512):
    n_hops = len(signal) // hop_size
    frames = []
    hann_win = hann(frame_size)
    for hop_i in range(n_hops):
        frame = signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)]
        frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
        frame *= hann_win
        frames.append(frame)
    frames = np.array(frames)
    return frames


def unchop(frames, hop_size=256, frame_size=512):
    signal = np.zeros((frames.shape[0] * hop_size + frame_size,))
    for hop_i, frame in enumerate(frames):
        signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)] += frame
    return signal


def matrix_dft(V):
    N = len(V)
    w = np.exp(-2j * np.pi / N)
    col = np.vander([w], N, True)
    W = np.vander(col.flatten(), N, True) / np.sqrt(N)
    return np.dot(W, V)


def dft_np(signal, hop_size=256, fft_size=512):
    s = chop(signal, hop_size, fft_size)
    N = s.shape[-1]
    k = np.reshape(
        np.linspace(0.0, 2 * np.pi / N * (N // 2), N // 2), [1, N // 2])
    x = np.reshape(np.linspace(0.0, N - 1, N), [N, 1])
    freqs = np.dot(x, k)
    real = np.dot(s, np.cos(freqs)) * (2.0 / N)
    imag = np.dot(s, np.sin(freqs)) * (2.0 / N)
    return real, imag


def idft_np(re, im, hop_size=256, fft_size=512):
    N = re.shape[1] * 2
    k = np.reshape(
        np.linspace(0.0, 2 * np.pi / N * (N // 2), N // 2), [N // 2, 1])
    x = np.reshape(np.linspace(0.0, N - 1, N), [1, N])
    freqs = np.dot(k, x)
    signal = np.zeros((re.shape[0] * hop_size + fft_size,))
    recon = np.dot(re, np.cos(freqs)) + np.dot(im, np.sin(freqs))
    for hop_i, frame in enumerate(recon):
        signal[(hop_i * hop_size):(hop_i * hop_size + fft_size)] += frame
    return signal


def rainbowgram(path,
                ax,
                peak=70.0,
                use_cqt=False,
                n_fft=1024,
                hop_length=256,
                sr=22050,
                over_sample=4,
                res_factor=0.8,
                octaves=5,
                notes_per_octave=10):
    audio = librosa.load(path, sr=sr)[0]
    if use_cqt:
        C = librosa.cqt(audio,
                        sr=sr,
                        hop_length=hop_length,
                        bins_per_octave=int(notes_per_octave * over_sample),
                        n_bins=int(octaves * notes_per_octave * over_sample),
                        filter_scale=res_factor,
                        fmin=librosa.note_to_hz('C2'))
    else:
        C = librosa.stft(
            audio,
            n_fft=n_fft,
            win_length=n_fft,
            hop_length=hop_length,
            center=True)
    mag, phase = librosa.core.magphase(C)
    phase_angle = np.angle(phase)
    phase_unwrapped = np.unwrap(phase_angle)
    dphase = phase_unwrapped[:, 1:] - phase_unwrapped[:, :-1]
    dphase = np.concatenate([phase_unwrapped[:, 0:1], dphase], axis=1) / np.pi
    mag = (librosa.logamplitude(
        mag**2, amin=1e-13, top_db=peak, ref_power=np.max) / peak) + 1
    cdict = {
        'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
        'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
        'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
        'alpha': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0))
    }
    my_mask = matplotlib.colors.LinearSegmentedColormap('MyMask', cdict)
    plt.register_cmap(cmap=my_mask)
    ax.matshow(dphase[::-1, :], cmap=plt.cm.rainbow)
    ax.matshow(mag[::-1, :], cmap=my_mask)


def rainbowgrams(list_of_paths,
                 saveto=None,
                 rows=2,
                 cols=4,
                 col_labels=[],
                 row_labels=[],
                 use_cqt=True,
                 figsize=(15, 20),
                 peak=70.0):
    """Build a CQT rowsXcols.
    """
    N = len(list_of_paths)
    assert N == rows * cols
    fig, axes = plt.subplots(
        rows, cols, sharex=True, sharey=True, figsize=figsize)
    fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, hspace=0.1)
    #       fig = plt.figure(figsize=(18, N * 1.25))
    for i, path in enumerate(list_of_paths):
        row = int(i / cols)
        col = i % cols
        if rows == 1 and cols == 1:
            ax = axes
        elif rows == 1:
            ax = axes[col]
        elif cols == 1:
            ax = axes[row]
        else:
            ax = axes[row, col]
        rainbowgram(path, ax, peak, use_cqt)
        ax.set_axis_bgcolor('white')
        ax.set_xticks([])
        ax.set_yticks([])
        if col == 0 and row_labels:
            ax.set_ylabel(row_labels[row])
        if row == rows - 1 and col_labels:
            ax.set_xlabel(col_labels[col])
    if saveto is not None:
        fig.savefig(filename='{}.png'.format(saveto))


def plot_rainbowgrams():
    for root in ['target', 'corpus', 'results']:
        files = glob.glob('{}/**/*.wav'.format(root), recursive=True)
        for f in files:
            fname = '{}.png'.format(f)
            if not os.path.exists(fname):
                rainbowgrams(
                    [f],
                    saveto=fname,
                    figsize=(20, 5),
                    rows=1,
                    cols=1)
                plt.close('all')