Spaces:
Runtime error
Runtime error
File size: 11,338 Bytes
1bb08e2 26cbe37 1bb08e2 7bd4d31 1bb08e2 7bd4d31 1bb08e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gradio as gr
import openai
import requests
import os
from dotenv import load_dotenv
import io
import sys
import json
import PIL
import time
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
import markdown2
title="najimino AI recipe generator"
inputs_label="どんな料理か教えてくれれば,新しいレシピを考えます"
outputs_label="najimino AIが返信をします"
visual_outputs_label="料理のイメージ"
description="""
- ※入出力の文字数は最大1000文字程度までを目安に入力してください。回答に50秒くらいかかります.
"""
article = """
"""
load_dotenv()
openai.api_key = os.getenv('OPENAI_API_KEY')
os.environ['STABILITY_HOST'] = 'grpc.stability.ai:443'
stability_api = client.StabilityInference(
key=os.getenv('STABILITY_KEY'),
verbose=True,
# engine="stable-diffusion-512-v2-1",
# engine="stable-diffusion-xl-beta-v2-2-2",
# engine="stable-diffusion-xl-1024-v0-9",
engine="stable-diffusion-xl-1024-v1-0",
# Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0
# stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-diffusion-xl-beta-v2-2-2 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)
MODEL = "gpt-4"
# MODEL = "gpt-3.5-turbo-16k"
# MODEL = "gpt-3.5-turbo-0613"
def get_filetext(filename, cache={}):
if filename in cache:
# キャッシュに保存されている場合は、キャッシュからファイル内容を取得する
return cache[filename]
else:
if not os.path.exists(filename):
raise ValueError(f"ファイル '{filename}' が見つかりませんでした")
with open(filename, "r") as f:
text = f.read()
# ファイル内容をキャッシュする
cache[filename] = text
return text
def get_functions_from_schema(filename):
schema = get_filetext(filename)
schema_json = json.loads(schema)
functions = schema_json.get("functions")
return functions
class StabilityAI:
@classmethod
def generate_image(cls, visualize_prompt):
print("visualize_prompt:"+visualize_prompt)
answers = stability_api.generate(
prompt=visualize_prompt,
)
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
print("NSFW")
if artifact.type == generation.ARTIFACT_IMAGE:
img = PIL.Image.open(io.BytesIO(artifact.binary))
return img
class OpenAI:
@classmethod
def chat_completion(cls, prompt, start_with=""):
constraints = get_filetext(filename = "constraints.md")
template = get_filetext(filename = "template.md")
# ChatCompletion APIに渡すデータを定義する
data = {
"model": MODEL,
"messages": [
{"role": "system", "content": constraints}
,{"role": "system", "content": template}
,{"role": "assistant", "content": "Sure!"}
,{"role": "user", "content": prompt}
,{"role": "assistant", "content": start_with}
],
}
# 文章生成にかかる時間を計測する
start = time.time()
# ChatCompletion APIを呼び出す
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {openai.api_key}"
},
json=data
)
print("gpt generation time: "+str(time.time() - start))
# ChatCompletion APIから返された結果を取得する
result = response.json()
print(result)
content = result["choices"][0]["message"]["content"].strip()
visualize_prompt = content.split("### Prompt for Visual Expression\n\n")[1]
#print("split_content:"+split_content)
#if len(split_content) > 1:
# visualize_prompt = split_content[1]
#else:
# visualize_prompt = "vacant dish"
#print("visualize_prompt:"+visualize_prompt)
answers = stability_api.generate(
prompt=visualize_prompt,
)
@classmethod
def chat_completion_with_function(cls, prompt, messages, functions):
print("prompt:"+prompt)
# 文章生成にかかる時間を計測する
start = time.time()
# ChatCompletion APIを呼び出す
response = openai.ChatCompletion.create(
model=MODEL,
messages=messages,
functions=functions,
function_call={"name": "format_recipe"}
)
print("gpt generation time: "+str(time.time() - start))
# ChatCompletion APIから返された結果を取得する
message = response.choices[0].message
print("chat completion message: " + json.dumps(message, indent=2))
return message
class NajiminoAI:
def __init__(self, user_message):
self.user_message = user_message
def generate_recipe_prompt(self):
template = get_filetext(filename="template.md")
prompt = f"""
{self.user_message}
---
上記を元に、下記テンプレートを埋めてください。
---
{template}
"""
return prompt
def format_recipe(self, lang, title, description, ingredients, instruction, comment_feelings_taste, explanation_to_blind_person, prompt_for_visual_expression):
template = get_filetext(filename = "template.md")
debug_message = template.format(
lang=lang,
title=title,
description=description,
ingredients=ingredients,
instruction=instruction,
comment_feelings_taste=comment_feelings_taste,
explanation_to_blind_person=explanation_to_blind_person,
prompt_for_visual_expression=prompt_for_visual_expression
)
print("debug_message: "+debug_message)
return debug_message
@classmethod
def generate(cls, user_message):
najiminoai = NajiminoAI(user_message)
return najiminoai.generate_recipe()
def generate_recipe(self):
user_message = self.user_message
constraints = get_filetext(filename = "constraints.md")
messages = [
{"role": "system", "content": constraints}
,{"role": "user", "content": user_message}
]
functions = get_functions_from_schema('schema.json')
message = OpenAI.chat_completion_with_function(prompt=user_message, messages=messages, functions=functions)
image = None
html = None
if message.get("function_call"):
function_name = message["function_call"]["name"]
args = json.loads(message["function_call"]["arguments"])
lang=args.get("lang")
title=args.get("title")
description=args.get("description")
ingredients=args.get("ingredients")
instruction=args.get("instruction")
comment_feelings_taste=args.get("comment_feelings_taste")
explanation_to_blind_person=args.get("explanation_to_blind_person")
prompt_for_visual_expression_in_en=args.get("prompt_for_visual_expression_in_en")
prompt_for_visual_expression = \
prompt_for_visual_expression_in_en \
+ " delicious looking extremely detailed photo f1.2 (50mm|85mm) award winner depth of field bokeh perfect lighting "
print("prompt_for_visual_expression: "+prompt_for_visual_expression)
# 画像生成にかかる時間を計測する
start = time.time()
image = StabilityAI.generate_image(prompt_for_visual_expression)
print("image generation time: "+str(time.time() - start))
function_response = self.format_recipe(
lang=lang,
title=title,
description=description,
ingredients=ingredients,
instruction=instruction,
comment_feelings_taste=comment_feelings_taste,
explanation_to_blind_person=explanation_to_blind_person,
prompt_for_visual_expression=prompt_for_visual_expression
)
html = (
"<div style='max-width:100%; overflow:auto'>"
+ "<p>"
+ markdown2.markdown(function_response)
+ "</div>"
)
return [image, html]
def main():
# インプット例をクリックした時のコールバック関数
def click_example(example):
# クリックされたインプット例をテキストボックスに自動入力
inputs.value = example
time.sleep(0.1) # テキストボックスに文字が表示されるまで待機
# 自動入力後に実行ボタンをクリックして結果を表示
execute_button.click()
iface = gr.Interface(fn=NajiminoAI.generate,
examples=[
["ラー麺 スイカ かき氷 八ツ橋"],
["お好み焼き 鯖"],
["茹でたアスパラガスに合う季節のソース"],
],
inputs=gr.Textbox(label=inputs_label),
outputs=[
gr.Image(label="Visual Expression"),
"html"
],
title=title,
description=description,
article=article
)
iface.launch()
if __name__ == '__main__':
function = ''
if len(sys.argv) > 1:
function = sys.argv[1]
if function == 'generate':
NajiminoAI.generate("グルテンフリーの香ばしいサバのお好み焼き")
elif function == 'generate_image':
image = StabilityAI.generate_image("Imagine a delicious gluten-free okonomiyaki with mackerel. The okonomiyaki is crispy on the outside and chewy on the inside. It is topped with savory sauce and creamy mayonnaise, creating a mouthwatering visual. The dish is garnished with finely chopped green onions and red pickled ginger, adding a pop of color. The mackerel fillets are beautifully grilled and placed on top of the okonomiyaki, adding a touch of elegance. The dish is served on a traditional Japanese plate, completing the visual presentation.")
print("image: " + image)
# imageが何のクラス確認する
if type(image) == PIL.PngImagePlugin.PngImageFile:
#save image
image.save("image.png")
else:
main()
|