File size: 1,797 Bytes
712d57a
 
 
 
bf7395c
 
106b685
1b381b5
712d57a
 
 
 
6c25c70
 
 
e39f36d
6c25c70
 
bf7395c
e39f36d
 
 
 
 
712d57a
 
cf98b6e
 
188bd26
cf98b6e
c56670e
 
3636771
712d57a
 
 
 
 
 
 
 
326480a
712d57a
326480a
712d57a
 
 
 
 
 
9ed680d
6c25c70
7c0b5ed
1b55ca3
6044028
712d57a
 
 
9ed680d
 
712d57a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from asyncio import constants
import gradio as gr
import requests
import os 
from base64 import b64decode
from PIL import Image
import io
import numpy as np


def generate_image(seed,psi):
  iface = gr.Interface.load("spaces/hysts/StyleGAN-Human")
  
  print("calling interface",seed,psi)
  img=iface(seed,psi)
  return img
  
  #img=iface.fns[0].fn(seed,psi)
  #wrong format, gah! convert to numpy array
  #header, encoded = img.split(",", 1)
  #data = b64decode(encoded)
  #image = Image.open(io.BytesIO(data))
  #image_np = np.array(image)
  #return image_np

def generate_model(img):

    print("about to die")
    iface = gr.Interface.load("spaces/radames/PIFu-Clothed-Human-Digitization")
    print("calling interface")
    #model,file=iface.fns[0].fn(img)
    model,file=iface(img)
    #print("got result",result)
    return model,file


demo = gr.Blocks()

with demo:
  gr.Markdown("<h1><center>StyleGan-Human + PIFu </center></h1>")
  gr.Markdown(
        "create a person and then generate a model from that person's image"
    )
    
  
  with gr.Row():
    b0 = gr.Button("generate image")
    b1 = gr.Button("generate model")
  
  with gr.Row():  
    seed=gr.Number(default=0, label='Seed')
    psi=gr.inputs.Slider(0, 2, step=0.05, default=0.7, label='Truncation psi')
    #outputImage = gr.Image(label="portrait",type="filepath", shape=(256,256))
    output_image = gr.outputs.Image(type="filepath", label='Output')
    model = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0],  label="3D Model")
    file= gr.File(label="Download 3D Model")

  
  b0.click(generate_image,inputs=[seed,psi],outputs=output_image)
  b1.click(generate_model, inputs=output_image, outputs=[model,file])

demo.launch(enable_queue=True, debug=True)