File size: 1,700 Bytes
712d57a
 
 
 
bf7395c
 
106b685
1b381b5
712d57a
 
 
 
bf7395c
 
 
 
106b685
bf7395c
 
712d57a
 
cf98b6e
 
188bd26
cf98b6e
c56670e
 
3636771
712d57a
 
 
 
 
 
 
 
326480a
712d57a
326480a
712d57a
 
 
 
 
 
9ed680d
712d57a
7c0b5ed
1b55ca3
6044028
712d57a
 
 
9ed680d
 
712d57a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from asyncio import constants
import gradio as gr
import requests
import os 
from base64 import b64decode
from PIL import Image
import io
import numpy as np


def generate_image(seed,psi):
  iface = gr.Interface.load("spaces/hysts/StyleGAN-Human")
  img=iface.fns[0].fn(seed,psi)
  #wrong format, gah! convert to numpy array
  header, encoded = img.split(",", 1)
  data = b64decode(encoded)
  image = Image.open(io.BytesIO(data))
  image_np = np.array(image)
  return image_np

def generate_model(img):

    print("about to die")
    iface = gr.Interface.load("spaces/radames/PIFu-Clothed-Human-Digitization")
    print("calling interface")
    #model,file=iface.fns[0].fn(img)
    model,file=iface(img)
    #print("got result",result)
    return model,file


demo = gr.Blocks()

with demo:
  gr.Markdown("<h1><center>StyleGan-Human + PIFu </center></h1>")
  gr.Markdown(
        "create a person and then generate a model from that person's image"
    )
    
  
  with gr.Row():
    b0 = gr.Button("generate image")
    b1 = gr.Button("generate model")
  
  with gr.Row():  
    seed=gr.Number(default=0, label='Seed')
    psi=gr.Slider(0, 2, step=0.05, default=0.7, label='Truncation psi')
    #outputImage = gr.Image(label="portrait",type="filepath", shape=(256,256))
    output_image = gr.outputs.Image(type="filepath", label='Output')
    model = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0],  label="3D Model")
    file= gr.File(label="Download 3D Model")

  
  b0.click(generate_image,inputs=[seed,psi],outputs=output_image)
  b1.click(generate_model, inputs=output_image, outputs=[model,file])

demo.launch(enable_queue=True, debug=True)