File size: 4,900 Bytes
0c696ac
4c68c58
 
 
4ee9eee
0c696ac
4c68c58
 
 
a72960c
 
4c68c58
 
 
 
 
 
 
 
 
 
0c696ac
 
0810df2
 
 
0c696ac
 
 
 
 
 
 
 
0810df2
66f7296
 
0c696ac
17cff25
0c696ac
 
 
 
 
 
 
 
 
 
df32c6d
0c696ac
 
 
 
 
df32c6d
 
0c696ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f115fa
833c8dd
 
0c696ac
 
 
 
 
 
 
833c8dd
4c68c58
833c8dd
84519dc
 
4c68c58
 
 
 
 
 
 
ecbc1ab
4c68c58
a72960c
 
4c68c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84519dc
4c68c58
 
 
 
e457e19
4c68c58
ecbc1ab
 
e457e19
 
 
 
 
ecbc1ab
4c68c58
 
 
 
 
e457e19
4c68c58
e457e19
 
 
 
4c68c58
40e5857
4c68c58
40e5857
 
 
 
 
833c8dd
 
 
 
4c68c58
40e5857
 
 
4c68c58
833c8dd
 
4c68c58
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from asyncio import constants
import gradio as gr
import requests
import os 
import re
import random

# GPT-J-6B API
API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B"
#HF_TOKEN = os.environ["HF_TOKEN"]
#headers = {"Authorization": f"Bearer {HF_TOKEN}"}

prompt = """

Bilbo is a hobbit rogue who wears a brown cloak and carries a ring.



Bremen is a human wizard, he wears a blue robe and carries a wand.

"""

examples = [["river"], ["night"], ["trees"],["table"],["laughs"]]


def npc_randomize():
    #name is a random combination of syllables
    vowels = list("aeiou")
    constants = list("bcdfghjklmnpqrstvwxyz")
    seperators=list("-'")
    name =""
    for i in range(random.randint(2,4)):
        name += random.choice(constants)
        name += random.choice(vowels)
        if random.random()<0.5:
            name += random.choice(constants)
        if random.random()<0.1:
            name += random.choice(seperators)

    #capitalize first letter
    name = name[0].upper() + name[1:]
    
    races="""Dwarf

    Elf

    Halfling

    Human

    Dragonborn

    Gnome

    Half-elf

    Half-orc

    Tiefling

    Aarakocra

    Genasi

    Goliath""".split("\n")

    races=[x.strip() for x in races]

    race=random.choice(races)

    print("foo",races,race)


    classes="""Barbarian

    Bard

    Cleric

    Druid

    Fighter

    Monk

    Paladin

    Ranger

    Rogue

    Sorcerer

    Warlock

    Wizard""".split("\n")
    
    classes=[x.strip() for x in classes]

    characterClass=random.choice(classes)

    pronoun=random.choices(["he","she","they"],weights=[0.45,0.45,0.1],k=1)[0]

    return name,race,characterClass,pronoun


    




def npc_generate(name,race,characterClass,pronoun):

  desc="{name} is a {race} {characterClass}, {pronoun}".format(name=name,race=race,characterClass=characterClass,pronoun=pronoun)

  p = prompt + "\n"+desc
  print(f"*****Inside poem_generate - Prompt is :{p}")
  json_ = {"inputs": p,
            "parameters":
            {
            "top_p": 0.9,
          "temperature": 1.1,
          "max_new_tokens": 50,
          "return_full_text": False,
          }}
  #response = requests.post(API_URL, headers=headers, json=json_)
  response = requests.post(API_URL, json=json_)
  output = response.json()
  print(f"If there was an error? Reason is : {output}")
  output_tmp = output[0]['generated_text']
  print(f"GPTJ response without splits is: {output_tmp}")
  #poem = output[0]['generated_text'].split("\n\n")[0] # +"."
  if "\n\n" not in output_tmp:
    if output_tmp.find('.') != -1:
      idx = output_tmp.find('.')
      poem = output_tmp[:idx+1]
    else:
      idx = output_tmp.rfind('\n')
      poem = output_tmp[:idx]
  else:
    poem = output_tmp.split("\n\n")[0] # +"."
  poem = poem.replace('?','')
  print(f"Poem being returned is: {poem}")
  return desc+poem

def poem_to_image(poem):
  print("*****Inside Poem_to_image")
  poem = " ".join(poem.split('\n'))
  poem = poem + ", character art, concept art, artstation"
  steps, width, height, images, diversity = '50','256','256','1',15
  iface = gr.Interface.load("spaces/multimodalart/latentdiffusion")
  print("about to die",iface,dir(iface))

  prompt = re.sub(r'[^a-zA-Z0-9 .]', '', poem)
  print("about to die",prompt)


  img=iface(poem, steps, width, height, images, diversity)[0]
  return img

demo = gr.Blocks()

with demo:
  gr.Markdown("<h1><center>NPC Generator</center></h1>")
  gr.Markdown(
        "based on <a href=https://huggingface.co/spaces/Gradio-Blocks/GPTJ6B_Poetry_LatentDiff_Illustration> Gradio poetry generator</a>."
        "<div>first input name, race and class (or generate them randomly)</div>"
        "<div>Next, use GPT-J to generate a short description</div>"
        "<div>Finally, Generate an illustration 🎨 provided by Latent Diffusion model.</div>"
    )
  
  with gr.Row():
    b0 = gr.Button("Randomize name,race and class")
    b1 = gr.Button("Generate NPC")
    b2 = gr.Button("Generate Image")
  
  with gr.Row():  
    input_name = gr.Textbox(label="name",placeholder="Drizzt")
    input_race = gr.Textbox(label="race",placeholder="dark elf")
    input_class = gr.Textbox(label="class",placeholder="ranger")
    input_pronoun = gr.Textbox(label="pronoun",placeholder="he")

  with gr.Row():
    poem_txt = gr.Textbox(label="description",lines=7)
    output_image = gr.Image(label="portrait",type="filepath", shape=(256,256))
  
  b0.click(npc_randomize,inputs=[],outputs=[input_name,input_race,input_class,input_pronoun])
  b1.click(npc_generate, inputs=[ input_name,input_race,input_class,input_pronoun], outputs=poem_txt)
  b2.click(poem_to_image, poem_txt, output_image)
  #examples=examples

demo.launch(enable_queue=True, debug=True)