Spaces:
Sleeping
Sleeping
File size: 16,248 Bytes
d95ff5b c2bdc87 d95ff5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
#!/usr/bin/env python
"""
Specialized script for quantizing Qwen2.5-VL models with sequential onloading
Handles quantization of Qwen2_5_VLForConditionalGeneration models properly
"""
import base64
from io import BytesIO
from typing import Optional, Union, Dict, Any
import torch
from datasets import load_dataset
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier, QuantizationModifier
from llmcompressor.modifiers.awq import AWQModifier, AWQMapping
from llmcompressor.utils import dispatch_for_generation
def create_qwen2_5_vl_data_collator():
"""Create a data collator for Qwen2.5-VL models that handles multimodal inputs."""
def data_collator(batch):
assert len(batch) == 1
return {key: torch.tensor(value) if isinstance(value, (list, int, float)) else value
for key, value in batch[0].items()}
return data_collator
def create_qwen2_5_vl_preprocessing_fn(processor, max_sequence_length: int = 2048):
"""Create a preprocessing function for Qwen2.5-VL datasets."""
def preprocess_and_tokenize(example):
# Handle different image formats
if 'image' in example:
# Process image
if hasattr(example['image'], 'save'):
# PIL Image object
buffered = BytesIO()
example["image"].save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue())
encoded_image_text = encoded_image.decode("utf-8")
base64_qwen = f"data:image;base64,{encoded_image_text}"
else:
# Already a string or other format
base64_qwen = str(example["image"])
else:
# If there's no image field, try 'img' or similar
img_key = None
for key in example.keys():
if 'image' in key.lower() or 'img' in key.lower():
img_key = key
break
if img_key:
if hasattr(example[img_key], 'save'):
buffered = BytesIO()
example[img_key].save(buffered, format="PNG")
encoded_image = base64.b64encode(buffered.getvalue())
encoded_image_text = encoded_image.decode("utf-8")
base64_qwen = f"data:image;base64,{encoded_image_text}"
else:
base64_qwen = str(example[img_key])
else:
# If no image, create a simple text-only example
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": example.get('text', example.get('content', 'What can you tell me about this?'))},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
return processor(
text=[text],
padding=False,
max_length=max_sequence_length,
truncation=True,
)
# Create message with image
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": base64_qwen},
{"type": "text", "text": "What does the image show?"},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# tokenize
return processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=False,
max_length=max_sequence_length,
truncation=True,
)
return preprocess_and_tokenize
def get_qwen2_5_vl_quantization_recipe(method: str, scheme: str = "W4A16"):
"""
Creates the appropriate quantization recipe for Qwen2.5-VL models.
Args:
method: Quantization method ("GPTQ", "AWQ", or "FP8")
scheme: Quantization scheme (e.g., "W4A16", "W8A8", "FP8")
Returns:
List of modifiers for the quantization recipe
"""
if method == "GPTQ":
return [
GPTQModifier(
targets="Linear",
scheme=scheme,
ignore=["lm_head", "re:visual.*", "re:model.visual.*"],
sequential_targets=["Qwen2_5_VLDecoderLayer"], # This is key for the architecture
),
]
elif method == "AWQ":
# Create AWQ mappings for Qwen2.5-VL architecture
mappings = [
AWQMapping(
"re:.*input_layernorm", ["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"]
),
AWQMapping("re:.*v_proj", ["re:.*o_proj"]),
AWQMapping(
"re:.*post_attention_layernorm", ["re:.*gate_proj", "re:.*up_proj"]
),
AWQMapping("re:.*up_proj", ["re:.*down_proj"]),
]
return [
AWQModifier(
ignore=["lm_head", "re:visual.*", "re:model.visual.*"],
scheme="W4A16_ASYM" if scheme == "W4A16" else scheme,
targets=["Linear"],
mappings=mappings,
),
]
elif method == "FP8":
return [
QuantizationModifier(
scheme="FP8",
targets="Linear",
ignore=["lm_head", "re:visual.*", "re:model.visual.*"]
)
]
else:
raise ValueError(f"Unsupported quantization method: {method}")
def quantize_qwen2_5_vl_model(
model_id: str,
quantization_method: str,
output_dir: Optional[str] = None,
dataset_id: str = "lmms-lab/flickr30k",
dataset_split: str = "test[:512]",
num_calibration_samples: int = 512,
max_sequence_length: int = 2048,
scheme: str = "W4A16",
trust_remote_code: bool = True,
):
"""
Quantizes a Qwen2.5-VL model with proper architecture handling and sequential onloading.
Args:
model_id: Hugging Face model ID to quantize
quantization_method: Method to use ("GPTQ", "AWQ", or "FP8")
output_dir: Directory to save the quantized model
dataset_id: Dataset ID for calibration
dataset_split: Dataset split for calibration
num_calibration_samples: Number of samples to use for calibration
max_sequence_length: Maximum sequence length for processing
scheme: Quantization scheme (e.g., "W4A16", "W8A8")
trust_remote_code: Whether to trust remote code in model loading
Returns:
Quantized model
"""
print(f"Loading model: {model_id}")
# Handle different device scenarios properly
if torch.cuda.is_available():
try:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16, # Use float16 to save memory on GPU
device_map="auto", # Auto device mapping for memory efficiency
trust_remote_code=trust_remote_code
)
except RuntimeError as e:
if "out of memory" in str(e).lower() or "offload_dir" in str(e):
print(f"Memory issue detected, using offloading: {e}")
import tempfile
with tempfile.TemporaryDirectory() as temp_dir:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
offload_folder=temp_dir,
max_memory={0: "24GB", "cpu": "48GB"},
trust_remote_code=trust_remote_code
)
else:
raise
else:
# CPU only
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float32, # Use float32 on CPU
device_map="cpu",
trust_remote_code=trust_remote_code
)
print(f"Loading processor for: {model_id}")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=trust_remote_code)
# If output directory not specified, create one based on model and method
if not output_dir:
model_name = model_id.rstrip("/").split("/")[-1]
output_dir = f"{model_name}-{scheme.replace(':', '-')}-{quantization_method}"
print(f"Output directory: {output_dir}")
# Load dataset and preprocess
print(f"Loading dataset: {dataset_id}")
try:
ds = load_dataset(dataset_id, split=dataset_split)
except Exception as e:
print(f"Failed to load {dataset_id}, trying alternative text-only dataset: {e}")
# If the image dataset fails, try a text-only dataset
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train[:512]")
# We'll need to adjust preprocessing for text-only data
ds = ds.shuffle(seed=42)
# Apply preprocessing
preprocess_fn = create_qwen2_5_vl_preprocessing_fn(processor, max_sequence_length)
try:
ds = ds.map(preprocess_fn, remove_columns=ds.column_names if hasattr(ds, 'column_names') else [])
except Exception as e:
print(f"Preprocessing failed: {e}")
print("Trying simpler preprocessing with text-only data...")
# Fallback: use text-only preprocessing
def text_only_preprocess(example):
text = example.get('text', example.get('content', str(example)))
if not isinstance(text, str):
text = str(text)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": text[:500] + "..." if len(text) > 500 else text}, # Limit length
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
return processor(text=[prompt], padding=False, max_length=max_sequence_length, truncation=True)
ds = ds.map(text_only_preprocess, remove_columns=ds.column_names if hasattr(ds, 'column_names') else [])
# Define data collator
data_collator = create_qwen2_5_vl_data_collator()
# Create recipe
recipe = get_qwen2_5_vl_quantization_recipe(quantization_method, scheme)
print(f"Starting quantization with method: {quantization_method}")
print(f"Using recipe: {recipe}")
# Perform oneshot quantization with sequential targets and proper handling
oneshot(
model=model,
tokenizer=processor, # Use processor as tokenizer for Qwen2.5-VL
dataset=ds,
recipe=recipe,
max_seq_length=max_sequence_length,
num_calibration_samples=num_calibration_samples,
trust_remote_code_model=trust_remote_code,
data_collator=data_collator,
# Use sequential onloading for memory efficiency
sequential_targets=["Qwen2_5_VLDecoderLayer"],
save_compressed=True,
output_dir=output_dir,
)
print(f"Quantization completed! Model saved to: {output_dir}")
# Save the processor as well
processor.save_pretrained(output_dir)
return model
def test_quantized_model(model, processor, max_sequence_length: int = 2048):
"""
Tests the quantized model with a sample generation.
"""
print("========== SAMPLE GENERATION ==============")
try:
dispatch_for_generation(model)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "http://images.cocodataset.org/train2017/000000231895.jpg",
},
{"type": "text", "text": "Please describe the animal in this image\n"},
],
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[prompt],
images=image_inputs,
videos=video_inputs,
padding=False,
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
).to(model.device)
output = model.generate(**inputs, max_new_tokens=100)
result = processor.decode(output[0], skip_special_tokens=True)
print(result)
print("==========================================")
return result
except Exception as e:
print(f"Test generation failed: {e}")
print("Trying text-only generation...")
# Try with text-only
try:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Hello, how are you today?"},
],
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
text=[prompt],
padding=False,
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
).to(model.device)
output = model.generate(**inputs, max_new_tokens=50)
result = processor.decode(output[0], skip_special_tokens=True)
print(result)
print("==========================================")
return result
except Exception as e2:
print(f"Text-only generation also failed: {e2}")
return None
def main():
"""
Main function to demonstrate quantization of Qwen2.5-VL models.
"""
import argparse
parser = argparse.ArgumentParser(description="Quantize Qwen2.5-VL models")
parser.add_argument("--model_id", type=str, required=True,
help="Model ID to quantize (e.g., 'huihui-ai/Huihui-Fara-7B-abliterated')")
parser.add_argument("--method", type=str, choices=["GPTQ", "AWQ", "FP8"],
default="GPTQ", help="Quantization method to use")
parser.add_argument("--output_dir", type=str, default=None,
help="Output directory for quantized model")
parser.add_argument("--dataset_id", type=str, default="lmms-lab/flickr30k",
help="Dataset for calibration (default: lmms-lab/flickr30k)")
parser.add_argument("--scheme", type=str, default="W4A16",
help="Quantization scheme (e.g., W4A16, W8A8)")
parser.add_argument("--num_samples", type=int, default=128,
help="Number of calibration samples")
args = parser.parse_args()
print(f"Starting quantization of {args.model_id} using {args.method}")
try:
# Quantize the model
quantized_model = quantize_qwen2_5_vl_model(
model_id=args.model_id,
quantization_method=args.method,
output_dir=args.output_dir,
dataset_id=args.dataset_id,
num_calibration_samples=args.num_samples,
scheme=args.scheme
)
# Test the model
# Load the processor again to test
processor = AutoProcessor.from_pretrained(args.model_id, trust_remote_code=True)
test_quantized_model(quantized_model, processor)
print(f"Successfully quantized {args.model_id} with {args.method}")
except Exception as e:
print(f"Quantization failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main() |