File size: 18,839 Bytes
2e201ff f5bf5a5 2e201ff 3a0b661 2e201ff 84c6fbd 2e201ff 616585b 2e201ff d4f1441 2e201ff d4f1441 2e201ff 422a169 2e201ff 193bd10 2e201ff 6a0ab40 2e201ff 3859011 bc861ae 2e201ff 1aa3469 2e201ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import gradio as gr
import bittensor as bt
import typing
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import wandb
import math
import os
import datetime
import time
import functools
import multiprocessing
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm import tqdm
import concurrent.futures
import sys
import numpy as np
load_dotenv()
FONT = (
"""<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
)
TITLE = """<h1 align="center" id="space-title" class="typewriter">MyShell TTS Subnet Leaderboard</h1>"""
IMAGE = """<a href="https://discord.gg/myshell" target="_blank"><img src="https://avatars.githubusercontent.com/u/127754094?s=2000&v=4" alt="MyShell" style="margin: auto; width: 20%; border: 0;" /></a>"""
HEADER = """<h2 align="center" class="typewriter">MyShell TTS Subnet is a groundbreaking project that leverages the power of decentralized collaboration to advance the state-of-the-art in open-source Text-to-Speech (TTS) technology. By harnessing the Bittensor blockchain and a unique incentive mechanism, we aim to create the most advanced and accessible TTS models. By leveraging MyShell's user base of over one million individuals, we are devoted to pushing cutting-edge technology to every end-user.</h3>"""
EVALUATION_DETAILS = """<b>Name</b> is the 🤗 Hugging Face model name (click to go to the model card). <b>Rewards / Day</b> are the expected rewards per day for each model. <b>Block</b> is the Bittensor block that the model was submitted in. More stats on <a href="https://taostats.io/subnets/netuid-3/" target="_blank">taostats</a>."""
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by a validator run by MyShell, the results are just for reference. </h3>"""
VALIDATOR_WANDB_PROJECT = "myshell_tc/tts_subnet_validator"
# os.environ.get("VALIDATOR_WANDB_PROJECT")
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
REPO_ID = "myshell-test/tts-subnet-leaderboard"
METAGRAPH_RETRIES = 10
METAGRAPH_DELAY_SECS = 30
METADATA_TTL = 10
NETUID = 3
SUBNET_START_BLOCK = 2635801
SECONDS_PER_BLOCK = 12
SUBTENSOR = os.environ.get("SUBTENSOR", "finney")
@dataclass
class Competition:
id: str
name: str
COMPETITIONS = [
Competition(id="p255", name="anispeech-speaker-new"),
Competition(id="p257", name="anispeech-speaker-old"),
]
DEFAULT_COMPETITION_ID = "p255"
last_refresh = None
def run_in_subprocess(func: functools.partial, ttl: int) -> typing.Any:
"""Runs the provided function on a subprocess with 'ttl' seconds to complete.
Args:
func (functools.partial): Function to be run.
ttl (int): How long to try for in seconds.
Returns:
Any: The value returned by 'func'
"""
def wrapped_func(func: functools.partial, queue: multiprocessing.Queue):
try:
result = func()
queue.put(result)
except (Exception, BaseException) as e:
# Catch exceptions here to add them to the queue.
queue.put(e)
# Use "fork" (the default on all POSIX except macOS), because pickling doesn't seem
# to work on "spawn".
ctx = multiprocessing.get_context("fork")
queue = ctx.Queue()
process = ctx.Process(target=wrapped_func, args=[func, queue])
process.start()
process.join(timeout=ttl)
if process.is_alive():
process.terminate()
process.join()
raise TimeoutError(f"Failed to {func.func.__name__} after {ttl} seconds")
# Raises an error if the queue is empty. This is fine. It means our subprocess timed out.
result = queue.get(block=False)
# If we put an exception on the queue then raise instead of returning.
if isinstance(result, Exception):
raise result
if isinstance(result, BaseException):
raise Exception(f"BaseException raised in subprocess: {str(result)}")
return result
def get_subtensor_and_metagraph() -> typing.Tuple[bt.subtensor, bt.metagraph]:
for i in range(0, METAGRAPH_RETRIES):
try:
print("Connecting to subtensor...")
subtensor: bt.subtensor = bt.subtensor(SUBTENSOR)
print("Pulling metagraph...")
metagraph: bt.metagraph = subtensor.metagraph(NETUID, lite=False)
return subtensor, metagraph
except:
if i == METAGRAPH_RETRIES - 1:
raise
print(
f"Error connecting to subtensor or pulling metagraph, retry {i + 1} of {METAGRAPH_RETRIES} in {METAGRAPH_DELAY_SECS} seconds..."
)
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
@dataclass
class ModelData:
uid: int
hotkey: str
namespace: str
name: str
commit: str
hash: str
block: int
incentive: float
emission: float
competition: str
@classmethod
def from_compressed_str(
cls,
uid: int,
hotkey: str,
cs: str,
block: int,
incentive: float,
emission: float,
):
"""Returns an instance of this class from a compressed string representation"""
tokens = cs.split(":")
return ModelData(
uid=uid,
hotkey=hotkey,
namespace=tokens[0],
name=tokens[1],
commit=tokens[2] if tokens[2] != "None" else "",
hash=tokens[3] if tokens[3] != "None" else "",
competition=tokens[4]
if len(tokens) > 4 and tokens[4] != "None"
else DEFAULT_COMPETITION_ID,
block=block,
incentive=incentive,
emission=emission,
)
def get_tao_price() -> float:
for i in range(0, METAGRAPH_RETRIES):
try:
return float(requests.get("https://api.mexc.com/api/v3/avgPrice?symbol=TAOUSDT").json()["price"])
except:
if i == METAGRAPH_RETRIES - 1:
raise
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
def get_validator_weights(
metagraph: bt.metagraph,
) -> typing.Dict[int, typing.Tuple[float, int, typing.Dict[int, float]]]:
ret = {}
for uid in metagraph.uids.tolist():
vtrust = metagraph.validator_trust[uid].item()
if vtrust > 0:
ret[uid] = (vtrust, metagraph.S[uid].item(), {})
for ouid in metagraph.uids.tolist():
if ouid == uid:
continue
weight = round(metagraph.weights[uid][ouid].item(), 4)
if weight > 0:
ret[uid][-1][ouid] = weight
return ret
def get_subnet_data(
subtensor: bt.subtensor, metagraph: bt.metagraph
) -> typing.List[ModelData]:
global last_refresh
# Function to be executed in a thread
def fetch_data(uid):
hotkey = metagraph.hotkeys[uid]
try:
partial = functools.partial(
get_metadata, subtensor, metagraph.netuid, hotkey
)
metadata = run_in_subprocess(partial, METADATA_TTL)
except Exception as e:
return None
if not metadata:
return None
commitment = metadata["info"]["fields"][0]
hex_data = commitment[list(commitment.keys())[0]][2:]
chain_str = bytes.fromhex(hex_data).decode()
block = metadata["block"]
# incentive = metagraph.incentive[uid].nan_to_num().item()
incentive = np.nan_to_num(metagraph.incentive[uid]).item()
emission = (
np.nan_to_num(metagraph.emission[uid]).item() * 20
# metagraph.emission[uid].nan_to_num().item() * 20
) # convert to daily TAO
try:
model_data = ModelData.from_compressed_str(
uid, hotkey, chain_str, block, incentive, emission
)
except Exception as e:
return None
return model_data
# Use ThreadPoolExecutor to fetch data in parallel
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
# Prepare the list of futures
futures = [executor.submit(fetch_data, uid) for uid in metagraph.uids.tolist()]
for future in tqdm(
concurrent.futures.as_completed(futures),
desc="Metadata for hotkeys",
total=len(futures),
):
result = future.result()
if result:
results.append(result)
last_refresh = datetime.datetime.now()
return results
def floatable(x) -> bool:
return (
isinstance(x, float) and not math.isnan(x) and not math.isinf(x)
) or isinstance(x, int)
def get_float_score(
key: str, history, competition_id: str
) -> typing.Tuple[typing.Optional[float], bool]:
if key in history and "competition_id" in history:
data = list(history[key])
if len(data) > 0:
competitions = list(history["competition_id"])
while True:
if competitions.pop() != competition_id:
data.pop()
continue
if floatable(data[-1]):
return float(data[-1]), True
else:
data = [float(x) for x in data if floatable(x)]
if len(data) > 0:
return float(data[-1]), False
break
return None, False
def get_sample(
uid, history, competition_id: str
) -> typing.Optional[typing.Tuple[str, str, str]]:
prompt_key = f"sample_prompt_data.{uid}"
response_key = f"sample_response_data.{uid}"
truth_key = f"sample_truth_data.{uid}"
if (
prompt_key in history
and response_key in history
and truth_key in history
and "competition_id" in history
):
competitions = list(history["competition_id"])
prompts = list(history[prompt_key])
responses = list(history[response_key])
truths = list(history[truth_key])
while True:
prompt = prompts.pop()
response = responses.pop()
truth = truths.pop()
if competitions.pop() != competition_id:
continue
if (
isinstance(prompt, str)
and isinstance(response, str)
and isinstance(truth, str)
):
return prompt, response, truth
break
return None
def get_scores(
uids: typing.List[int], competition_id: str
) -> typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]]:
api = wandb.Api()
runs = list(api.runs(VALIDATOR_WANDB_PROJECT))
result = {}
for run in runs:
history = run.history()
for uid in uids:
if uid in result.keys():
continue
win_rate, win_rate_fresh = get_float_score(
f"win_rate_data.{uid}", history, competition_id
)
win_total, win_total_fresh = get_float_score(
f"win_total_data.{uid}", history, competition_id
)
weight, weight_fresh = get_float_score(
f"weight_data.{uid}", history, competition_id
)
sample = get_sample(uid, history, competition_id)
result[uid] = {
"win_rate": win_rate,
"win_total": win_total,
"weight": weight,
"sample": sample,
"fresh": win_rate_fresh and win_total_fresh,
}
if len(result.keys()) == len(uids):
break
return result
def format_score(uid, scores, key) -> typing.Optional[float]:
if uid in scores:
if key in scores[uid]:
point = scores[uid][key]
if floatable(point):
return round(scores[uid][key], 4)
return None
def next_tempo(start_block, tempo, block):
start_num = start_block + tempo
intervals = (block - start_num) // tempo
nearest_num = start_num + ((intervals + 1) * tempo)
return nearest_num
subtensor, metagraph = get_subtensor_and_metagraph()
tao_price = get_tao_price()
leaderboard_df = get_subnet_data(subtensor, metagraph)
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)
print(leaderboard_df)
competition_scores = {
y.id: get_scores([x.uid for x in leaderboard_df if x.competition == y.id], y.id)
for y in COMPETITIONS
}
current_block = metagraph.block.item()
next_update = next_tempo(
SUBNET_START_BLOCK,
360,
current_block,
)
blocks_to_go = next_update - current_block
current_time = datetime.datetime.now()
next_update_time = current_time + datetime.timedelta(
seconds=blocks_to_go * SECONDS_PER_BLOCK
)
validator_df = get_validator_weights(metagraph)
weight_keys = set()
for uid, stats in validator_df.items():
weight_keys.update(stats[-1].keys())
def get_next_update():
now = datetime.datetime.now()
delta = next_update_time - now
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
def leaderboard_data(
show_stale: bool,
scores: typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]],
competition_id: str,
):
value = [
[
f"[{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid})](https://huggingface.co/{c.namespace}/{c.name}/commit/{c.commit})",
format_score(c.uid, scores, "win_rate"),
format_score(c.uid, scores, "weight"),
c.uid,
c.block,
]
for c in leaderboard_df
if c.competition == competition_id and (scores[c.uid]["fresh"] or show_stale)
]
return value
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
gr.HTML(FONT)
gr.HTML(TITLE)
gr.HTML(IMAGE)
gr.HTML(HEADER)
gr.HTML(value=get_next_update())
with gr.Tabs():
for competition in COMPETITIONS:
with gr.Tab(competition.name):
scores = competition_scores[competition.id]
print(scores)
class_denominator = sum(
leaderboard_df[i].incentive
for i in range(0, min(10, len(leaderboard_df)))
if leaderboard_df[i].incentive
and leaderboard_df[i].competition == competition.id
)
class_values = {
f"{leaderboard_df[i].namespace}/{leaderboard_df[i].name} ({leaderboard_df[i].commit[0:8]}, UID={leaderboard_df[i].uid}) · ${round(leaderboard_df[i].emission * tao_price, 2):,} (τ{round(leaderboard_df[i].emission, 2):,})": leaderboard_df[
i
].incentive
/ class_denominator
for i in range(0, min(10, len(leaderboard_df)))
if leaderboard_df[i].incentive
and leaderboard_df[i].competition == competition.id
}
gr.Label(
value=class_values,
num_top_classes=10,
)
with gr.Accordion("Evaluation Stats"):
gr.HTML(
EVALUATION_HEADER.replace(
"{date}",
last_refresh.strftime("refreshed at %H:%M on %Y-%m-%d"),
)
)
with gr.Tabs():
for entry in leaderboard_df:
if entry.competition == competition.id:
sample = scores[entry.uid]["sample"]
if sample is not None:
name = f"{entry.namespace}/{entry.name} ({entry.commit[0:8]}, UID={entry.uid})"
with gr.Tab(name):
gr.Chatbot([(sample[0], sample[1])])
# gr.Chatbot([(sample[0], f"*{name}*: {sample[1]}"), (None, f"*GPT-4*: {sample[2]}")])
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_data(
show_stale.value, scores, competition.id
),
headers=[
"Name",
"Win Rate",
"Weight",
"UID",
"Block",
],
datatype=[
"markdown",
"number",
"number",
"number",
"number",
],
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
gr.HTML(EVALUATION_DETAILS)
show_stale.change(
lambda x: leaderboard_data(x, scores, competition.id),
[show_stale],
leaderboard_table,
)
with gr.Accordion("Validator Stats"):
validator_table = gr.components.Dataframe(
value=[
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)]
+ [
validator_df[uid][-1].get(c.uid)
for c in leaderboard_df
if c.incentive
]
for uid, _ in sorted(
zip(
validator_df.keys(),
[validator_df[x][1] for x in validator_df.keys()],
),
key=lambda x: x[1],
reverse=True,
)
],
headers=["UID", "Stake (τ)", "V-Trust"]
+ [
f"{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid})"
for c in leaderboard_df
if c.incentive
],
datatype=["number", "number", "number"]
+ ["number" for c in leaderboard_df if c.incentive],
interactive=False,
visible=True,
)
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
# # Switch to independent restarter now
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=60 * 5) # restart every 15 minutes
# scheduler.start()
demo.launch()
|