Spaces:
Runtime error
Runtime error
File size: 24,632 Bytes
c374d54 93da7ad c374d54 f5bce27 c7a6da7 e89b736 c374d54 f5bce27 c4f40ed c374d54 37e67b3 c374d54 93da7ad c374d54 f551546 c374d54 229f9d2 c374d54 a8f9a54 c374d54 ad7af16 c374d54 a8f9a54 c374d54 f551546 c374d54 01a12b9 affde80 01a12b9 c374d54 01a12b9 c374d54 229f9d2 c374d54 19428d4 c374d54 215c804 64b447a f551546 64b447a 215c804 19428d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
from openai import OpenAI
import urllib
import requests
import base64
import os
import ast
import cv2
from io import BytesIO
from PIL import Image
from tempfile import NamedTemporaryFile
import pyheif
import time
from zipfile import ZipFile
import gradio as gr
from docx import Document
import numpy as np
api_key = os.environ['OPENAI_API_KEY']
brandfolder_api = os.environ['BRANDFOLDER_API_KEY']
client_key_dict = {
"The Official Moving Company, LLC": 'KXRbpext',
"Newmark Commercial Real Estate": 'none',
"Test Collection": 'test',
'Direct Mail Xperts LLC':'d5J3MdlO'
}
section_key_dict = {
"Original Project Assets": 'c5vm8cnh9jvkjbh7r43qxkv',
"Pre-Processed Images": 'rfqf67pbhn8hg6pjcj762q3q',
"AI Processed Images": 'czpq4nwz78c3cwnp6h9n44z'
}
# Functions
def rename(filename):
client = OpenAI()
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant specializing in renaming files."},
{"role": "user", "content": f"Provide a similar name for this filename: {filename}. Only return the filename and use hyphens in the filename."}
]
)
return completion.choices[0].message.content
def get_collection_dict():
headers = {
'Accept': 'application/json',
'Authorization': brandfolder_api
}
r = requests.get('https://brandfolder.com/api/v4/brandfolders/988cgqcg8xsrr5g9h7gtsqkg/collections?per=300', params={
# use a dict with your desired URL parameters here
}, headers=headers)
temp = r.json()['data']
collection_dict = {item['attributes']['name']:item['id'] for item in temp}
return collection_dict
def get_collection_names():
collection_dict = get_collection_dict()
return list(collection_dict.keys())
def get_topical_map_text(path):
document = Document(path)
extracted_text = []
for paragraph in document.paragraphs:
# Get the left indentation of the current paragraph (if any)
left_indent = paragraph.paragraph_format.left_indent
if left_indent == None:
continue
else:
indent_level = int(left_indent.pt / 20) # Convert Twips to points and then to a simple indentation level
# You might want to adjust the logic below depending on how you want to represent indentation
indent_symbol = " " * indent_level # This creates a number of spaces based on the indentation level; adjust as needed
# Construct the paragraph text with indentation representation
formatted_text = f"{indent_symbol}{paragraph.text}"
extracted_text.append(formatted_text)
return "\n".join(extracted_text)
def get_asset_info(asset_id):
'''
Takes information from asset_id
Input: asset_id
Output: collection_id, collection_name, section_id
'''
# asset_id = data['data']['attributes']['key']
headers = {
'Content-Type': 'application/json',
'Authorization': brandfolder_api
}
r = requests.get(f'https://brandfolder.com/api/v4/assets/{asset_id}?include=section,collections,custom_fields,attachments', params={}, headers=headers)
# gets section_id
try:
section_id = r.json()['data']['relationships']['section']['data']['id']
except:
section_id = ''
# gets collection_id
# gets collection_name
try:
collection_id = r.json()['data']['relationships']['collections']['data'][0]['id']
collection_name = [item['attributes']['name'] for item in r.json()['included'] if item['type']=='collections'][0]
except:
collection_id = ''
collection_name = ''
# gets asset_name, asset_type, and asset_url
try:
asset_type = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['value']=='Photo'][0]
except:
asset_type = ''
try:
asset_name = r.json()['data']['attributes']['name']
except:
asset_name = ''
try:
access_key = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'What is your Access Code?'][0]
except:
access_key = ''
try:
asset_url = [item['attributes']['url'] for item in r.json()['included'] if item['type'] == 'attachments'][0]
except:
asset_url = ''
try:
client_name = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'Client Name'][0]
except:
client_name = ''
try:
project_name = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'List Project Name Photos Belong To'][0]
except:
project_name = ''
return_dict = {
"section_id": section_id,
"collection_id": collection_id,
"collection_name": collection_name,
"asset_type": asset_type,
"asset_name": asset_name,
"access_key": access_key,
"image_url": asset_url,
"client_name": client_name,
"project_name": project_name
}
return return_dict
def get_seo_tags(image_url, topical_map, new_imgs, attempts=0, max_attempts=5):
'''
Gets the seo tags and topic/sub-topic classification for an image using OpenAI GPT-4 Vision Preview
Input: image path of desired file
Output: dict of topic, sub-topic, and seo tags
'''
if attempts > max_attempts:
print("Maximum number of retries exceeded.")
return {"error": "Max retries exceeded, operation failed."}
print('in seo_tags')
# Query for GPT-4
topic_map_query = f"""
% You are an expert web designer that can only answer questions relevent to the following Topical Map.
% Goal: Output the topic, description, caption, seo tags, alt_tags, and filename for this image using the Topical Map provided.
% TOPCIAL MAP
```{topical_map}```
"""
# IF YOU CANNOT PROVIDE AN TOPIC FOR EVERY IMAGE AFTER 5 ATTEMPTS, REPLY WITH 'irrelevant'.
topic_list = topical_map.split('\n')
topic_list = [topic.strip() for topic in topic_list]
topic_list.insert(0, "irrelevant")
def compress_and_encode_image(url, target_size_mb=20, quality=70):
# Fetch the image from the URL
response = requests.get(url, stream=True)
response.raise_for_status()
# Open the image using Pillow, handling HEIC files
img = None
img_format = response.headers['Content-Type'].split('/')[-1]
if img_format.lower() == 'heic':
heif_file = pyheif.read_heif(response.content)
img = Image.frombytes(heif_file.mode, heif_file.size, heif_file.data, "raw", heif_file.mode, heif_file.stride)
else:
img = Image.open(BytesIO(response.content))
img = img.convert('RGB')
# Compress the image by adjusting the quality
img_bytes = BytesIO()
img.save(img_bytes, format='JPEG', quality=quality)
# Check if the image size is acceptable
while img_bytes.getbuffer().nbytes > (target_size_mb * 1024 * 1024) and quality > 10:
quality -= 5
img_bytes = BytesIO()
img.save(img_bytes, format='JPEG', quality=quality)
# Encode the image content to base64
encoded_image = base64.b64encode(img_bytes.getvalue()).decode('utf-8')
return encoded_image
base64_image = compress_and_encode_image(image_url)
# REMOVE WHEN SHARING FILE
api_key = os.environ['OPENAI_API_KEY']
# Calling gpt-4 vision
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
# IF YOU CANNOT PROVIDE AN TOPIC FOR EVERY IMAGE AFTER 5 ATTEMPTS, REPLY WITH 'irrelevant'.
payload = {
"model": "gpt-4o",
"response_format": {"type": "json_object"},
"messages": [
{'role': 'system', 'content': 'You are an expert web designer that can only answer questions relevent to the following topical map.'
},
{
"role": "user",
"content": [
{
"type": "text",
"text": topic_map_query +
"""
% INSTRUCTIONS
Step 1 - Generate keywords to describe this image
Step 2 - Decide which topic in the Topicla Map this image fall under, using the keywords you generated and the image itself. You are only permitted to use the exact wording of the topic in the topical map.
Step 2 - Provide a topic-relevant 5 sentence description for the image. Describe the image only using context relevant to the topics in the topical map.
Adhere to the following guidelines when crafting your 5 sentence description:
- Mention only the contents of the image.
- Do not mention the quality of the image.
- Ignore all personal information within the image.
- Be as specific as possible when identifying tools/items in the image.
Step 3 - Using the description in Step 1, create a 160 character caption. Make sure the caption is less than 160 characters.
Step 4 - Using the description in Step 1, create 3 topic-relevant SEO tags for this image that will drive traffic to our website. The SEO tags must be two words or less. You must give 3 SEO tags.
Step 5 - Using the description in Step 1, provide a topic-relevant SEO alt tag for the image that will enhance how the website is ranked on search engines.
Step 6 - Using the description in Step 1, provide a new and unique filename for the image as well. Use hyphens for the filename. Do not include extension.
Step 7 - YOU ARE ONLY PERMITTED TO OUTPUT THE TOPIC, DESCRIPTION, CAPTION, SEO, ALT_TAG, AND FILENAME IN THE FOLLOWING JSON FORMAT:
% OUTPUT FORMAT:
{"topic": topic,
"description": description,
"caption": caption,
"seo": [seo],
"alt_tag": [alt tag],
"filename": filename
}
"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64, {base64_image}"
}
}
]
}
],
"max_tokens": 300
}
try:
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
response_data = response.json()
if response.status_code == 200 and 'choices' in response_data and len(response_data['choices']) > 0:
keys = ['topic', 'description', 'caption', 'seo', 'alt_tag', 'filename']
json_dict = ast.literal_eval(response.json()['choices'][0]['message']['content'])
if json_dict['topic'] not in topic_list:
return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts+1)
if set(json_dict.keys()) != set(keys):
return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts+1)
return json_dict
else:
print("API call failed or bad data, retrying...")
return get_seo_tags(image_url, topical_map, new_imgs, attempts=attempts + 1)
except Exception as e:
print("Exception during API call:", str(e))
return get_seo_tags(image_url, topical_map, new_imgs, attempts=attempts + 1)
def personalize_answer(answer, query_engine):
if query_engine:
prompt = f'''
% You are an expert construction contracter describing this image
% Goal: Add relevant company information to the Answer based on the context provided. Only output the Enhancement. Remove the triple quotes from the output
% Answer:
```{answer}```
% Instructions:
Step 1 - Identify what relevant company information from the context is relevant to the Answer
Step 2 - Enhance the Answer with the relevant company information. This will be known as the Enhancement
Step 3 - Make the Enhancement the same character length as the Answer. Use Python to check that they are the same character length.
Step 4 - Only output the Enhancement. Remove the triple quotes from the output
'''
response = query_engine.query(prompt)
return response.response.replace("`", "")
else:
return answer
# creates the asset in the client's brand folder
def create_ai_asset(asset_dict, topical_map, collection_name, new_imgs, query_engine=None, tags=True):
'''
Creates asset from image path. Also creates seo tags, topic, and alt tag for
image
Input: name of initial asset, name of client, path to image, create tags boolean
Output: id of asset
'''
print(asset_dict)
# results from asset_dict
topical_map = get_topical_map_text(topical_map)
client_name = asset_dict['client_name']
access_key = asset_dict['access_key']
try:
client_key = client_key_dict[collection_name]
except:
client_key = 'no key'
if client_name != collection_name and access_key != client_key:
print(f'{collection_name} != {client_name}')
print(f'{access_key} != {client_key}')
return
asset_name = asset_dict['asset_name']
collection_id = asset_dict['collection_id']
project_name = asset_dict['project_name']
if collection_id == '':
collection_dict_temp = get_collection_dict()
collection_id = collection_dict_temp[client_name]
image_url = asset_dict['image_url']
# get seo, topic, and sub-topic from OpenAI API
json_dict = get_seo_tags(image_url, topical_map, new_imgs)
if not json_dict:
json_dict = get_seo_tags(image_url, topical_map, new_imgs)
# parsing out results from get_seo_tags
topic = json_dict['topic']
description = json_dict['description']
caption = json_dict['caption']
seo_tags = json_dict['seo']
alt_tag = json_dict['alt_tag']
image_name = json_dict['filename']
description = personalize_answer(description, query_engine)
caption = personalize_answer(caption, query_engine)
alt_tag = personalize_answer(alt_tag, query_engine)
headers = {
'Content-Type': 'application/json',
'Authorization': brandfolder_api
}
r = requests.get(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets', params={
# use a dict with your desired URL parameters here
}, headers=headers)
asset_names = [item['attributes']['name'] for item in r.json()['data']]
asset_names = new_imgs + asset_names
while image_name in asset_names:
image_name = rename(image_name)
# og image url
og_object_url = image_url
# binary upload of image_path
r = requests.get('https://brandfolder.com/api/v4/upload_requests', params={}, headers=headers)
# used to upload the image
upload_url = r.json()['upload_url']
# container for the uploaded image to be used by the post request
object_url = r.json()['object_url']
def download_and_resize_image(image_url, upload_url):
# Fetch the image from the URL
url_response = urllib.request.urlopen(image_url)
img_array = np.array(bytearray(url_response.read()), dtype=np.uint8)
# Try to decode the image using OpenCV
image = cv2.imdecode(img_array, -1)
# If the image is None, it might be a HEIC file
if image is None:
heif_file = pyheif.read_heif(img_array)
img = Image.frombytes(
heif_file.mode,
heif_file.size,
heif_file.data,
"raw",
heif_file.mode,
heif_file.stride
)
# Convert to RGB
img = img.convert('RGB')
# Save to a BytesIO object
img_bytes = BytesIO()
img.save(img_bytes, format='JPEG')
img_bytes.seek(0)
img_array = np.array(bytearray(img_bytes.read()), dtype=np.uint8)
# Decode the JPEG image using OpenCV
image = cv2.imdecode(img_array, -1)
# Resize the image based on its dimensions and area
try:
height, width, c = image.shape
except:
height, width = image.shape
area = width * height
if width > height:
# Landscape image
if area > 667000:
image = cv2.resize(image, (1000, 667))
else:
# Portrait image
if area > 442236:
image = cv2.resize(image, (548, 807))
# Save the image to a temporary file and upload it
with NamedTemporaryFile(delete=True, suffix='.jpg') as temp_image:
cv2.imwrite(temp_image.name, image)
temp_image.seek(0)
response = requests.put(upload_url, data=temp_image)
return response
response = download_and_resize_image(image_url, upload_url)
# posts image with image name
r = requests.post(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets', json={
# use a dict with the POST body here
'data': {
'attributes': [
{
'name': image_name,
'description': description,
'attachments': [
{
'url': object_url,
'filename': f'{image_name}.jpg'
},
{
'url': og_object_url,
'filename': f'{image_name}-original.jpg'
}
]
}
]
},
# AI Original section key
'section_key': 'czpq4nwz78c3cwnp6h9n44z'
}, params={}, headers=headers)
# id of newly created asset
asset_id = r.json()['data'][0]['id']
# tags and topic payloads
tags_payload = {'data': {'attributes': [{'name': tag} for tag in seo_tags]}}
topic_payload = {'data':
[
{
'attributes': {
'value': topic
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
alt_tag_payload = {'data':
[
{
'attributes': {
'value': alt_tag
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
year_payload = {'data':
[
{
'attributes': {
'value': 2024
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
client_payload = {'data':
[
{
'attributes': {
'value': client_name
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
caption_payload = {'data':
[
{
'attributes': {
'value': caption
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
project_payload = {'data':
[
{
'attributes': {
'value': project_name
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
year_id = 'k8vr5chnkw3nrnrpkh4f9fqm'
client_name_id = 'x56t6r9vh9xjmg5whtkmp'
# Tone ID: px4jkk2nqrf9h6gp7wwxnhvz
# Location ID: nm6xqgcf5j7sw8w994c6sc8h
alt_tag_id = 'vk54n6pwnxm27gwrvrzfb'
topic_id = '9mcg3rgm5mf72jqrtw2gqm7t'
project_name_id = '5zpqwt2r348sjbnc6rpxc96'
caption_id = 'cmcbhcc5nmm72v57vrxppw2x'
# Original Project Images Section ID: c5vm8cnh9jvkjbh7r43qxkv
# Edited Project Images Section ID: 5wpz2s9m3g7ctcjpm4vrt46
r_asset = requests.post(f'https://brandfolder.com/api/v4/assets/{asset_id}/tags', json=tags_payload, params={}, headers=headers)
# alt_tags
r_topic = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{topic_id}/custom_field_values', json=
topic_payload
, params={
}, headers=headers)
r_alt_tag = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{alt_tag_id}/custom_field_values', json=
alt_tag_payload
, params={
}, headers=headers)
r_year = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{year_id}/custom_field_values', json=
year_payload
, params={
}, headers=headers)
r_client = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{client_name_id}/custom_field_values', json=
client_payload
, params={
}, headers=headers)
r_project = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{project_name_id}/custom_field_values', json=
project_payload
, params={
}, headers=headers)
r_caption = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{caption_id}/custom_field_values', json=
caption_payload
, params={
}, headers=headers)
return image_name
def delete_og_asset(asset_id):
headers = {
'Accept': 'application/json',
'Authorization': 'eyJhbGciOiJIUzI1NiJ9.eyJvcmdhbml6YXRpb25fa2V5IjoiZmY0cmt0NDNoMzRtMjVoa2duNWJteDlmIiwiaWF0IjoxNzA1OTQ4NjI3LCJ1c2VyX2tleSI6IjhyNnhxeDR6bTdyN2Z4NnJqY25jM2IzIiwic3VwZXJ1c2VyIjpmYWxzZX0.xUPT9j08a0THBwW_0GkQjllJxmjeDGtcPeoIOu_w9Zs'
}
r = requests.delete(f'https://brandfolder.com/api/v4/assets/{asset_id}', params={
# use a dict with your desired URL parameters here
}, headers=headers)
return
def run_preprocess_ai(topical_map, client_name, section_type, query_engine=None, progress=gr.Progress()):
section_id = section_key_dict[section_type]
headers = {
'Content-Type': 'application/json',
'Authorization': brandfolder_api
}
collection_dict = get_collection_dict()
collection_id = collection_dict[client_name]
page = 1
pre_process_ids = []
run = True
while run == True:
r = requests.get(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets?include=section,custom_fields&fields=created_at&page={page}&per=3000&sort_by=created_at&order=DESC', params={}, headers=headers)
page+=1
asset_names = [item['id'] for item in r.json()['data'] if item['relationships']['section']['data']['id'] == section_id]
if asset_names in pre_process_ids:
run = False
else:
pre_process_ids.append(asset_names)
asset_names = sum(pre_process_ids, [])
new_imgs = []
for asset_id in progress.tqdm(asset_names, desc="Uploading..."):
try:
time.sleep(2)
asset_dict = get_asset_info(asset_id)
new_img = create_ai_asset(asset_dict, topical_map, client_name, new_imgs, query_engine=query_engine[-1])
new_imgs.append(new_img)
if new_img:
delete_og_asset(asset_id)
except Exception as e:
print(f'An unexpected error occured processing {asset_dict["asset_name"]}: {e}')
gr.Info('Images have been processed!')
return 'Images Processed' |