File size: 23,668 Bytes
c374d54
 
 
 
 
 
 
 
 
 
93da7ad
c374d54
 
 
 
 
 
 
 
 
 
 
 
f5bce27
c7a6da7
e89b736
c374d54
 
 
 
f5bce27
c4f40ed
c374d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e67b3
c374d54
 
93da7ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c374d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f9a54
c374d54
 
 
 
ad7af16
 
 
 
c374d54
a8f9a54
 
c374d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01a12b9
 
 
 
 
 
 
 
 
 
affde80
01a12b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c374d54
01a12b9
 
c374d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215c804
c374d54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215c804
64b447a
 
 
 
 
 
 
 
 
215c804
c374d54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
from openai import OpenAI
import urllib
import requests
import base64
import os
import ast
import cv2
from io import BytesIO
from PIL import Image
from tempfile import NamedTemporaryFile
import pyheif
import time
from zipfile import ZipFile
import gradio as gr
from docx import Document
import numpy as np


api_key = os.environ['OPENAI_API_KEY']
brandfolder_api = os.environ['BRANDFOLDER_API_KEY']

client_key_dict = {
    "The Official Moving Company, LLC": 'KXRbpext',
    "Newmark Commercial Real Estate": 'none',
    "Test Collection": 'test',
    'Direct Mail Xperts LLC':'d5J3MdlO'
}

section_key_dict = {
    "Original Project Assets": 'c5vm8cnh9jvkjbh7r43qxkv',
    "Pre-Processed Images": 'rfqf67pbhn8hg6pjcj762q3q',
    "AI Processed Images": 'czpq4nwz78c3cwnp6h9n44z'
}

# Functions

def rename(filename):
    client = OpenAI()
    completion = client.chat.completions.create(
      model="gpt-4o",
      messages=[
        {"role": "system", "content": "You are a helpful assistant specializing in renaming files."},
        {"role": "user", "content": f"Provide a similar name for this filename: {filename}. Only return the filename and use hyphens in the filename."}
      ]
    )
    return completion.choices[0].message.content


def get_collection_dict():
  headers = {
  'Accept': 'application/json',
  'Authorization': brandfolder_api
  }

  r = requests.get('https://brandfolder.com/api/v4/brandfolders/988cgqcg8xsrr5g9h7gtsqkg/collections?per=300', params={
      # use a dict with your desired URL parameters here
  }, headers=headers)

  temp = r.json()['data']

  collection_dict = {item['attributes']['name']:item['id'] for item in temp}

  return collection_dict


def get_collection_names():
    collection_dict = get_collection_dict()
    return list(collection_dict.keys())


def get_topical_map_text(path):
    document = Document(path)

    extracted_text = []

    for paragraph in document.paragraphs:
        # Get the left indentation of the current paragraph (if any)
        left_indent = paragraph.paragraph_format.left_indent
        if left_indent == None:
          continue
        else:
          indent_level = int(left_indent.pt / 20)  # Convert Twips to points and then to a simple indentation level

          # You might want to adjust the logic below depending on how you want to represent indentation
          indent_symbol = " " * indent_level  # This creates a number of spaces based on the indentation level; adjust as needed

          # Construct the paragraph text with indentation representation
          formatted_text = f"{indent_symbol}{paragraph.text}"
          extracted_text.append(formatted_text)

    return "\n".join(extracted_text)


def get_asset_info(asset_id):
  '''
  Takes information from asset_id

  Input: asset_id
  Output: collection_id, collection_name, section_id
  '''
  # asset_id = data['data']['attributes']['key']
  headers = {
    'Content-Type': 'application/json',
    'Authorization': brandfolder_api
  }
  r = requests.get(f'https://brandfolder.com/api/v4/assets/{asset_id}?include=section,collections,custom_fields,attachments', params={}, headers=headers)

  # gets section_id
  try:
    section_id = r.json()['data']['relationships']['section']['data']['id']
  except:
    section_id = ''

  # gets collection_id
  # gets collection_name
  try:
    collection_id = r.json()['data']['relationships']['collections']['data'][0]['id']
    collection_name = [item['attributes']['name'] for item in r.json()['included'] if item['type']=='collections'][0]
  except:
    collection_id = ''
    collection_name = ''

  # gets asset_name, asset_type, and asset_url
  try:
    asset_type = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['value']=='Photo'][0]
  except:
    asset_type = ''
  try:
    asset_name = r.json()['data']['attributes']['name']
  except:
    asset_name = ''
  try:
    access_key = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'What is your Access Code?'][0]
  except:
    access_key = ''
  try:
    asset_url = [item['attributes']['url'] for item in r.json()['included'] if item['type'] == 'attachments'][0]
  except:
    asset_url = ''
  try:
    client_name = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'Client Name'][0]
  except:
    client_name = ''
  try:
    project_name = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'List Project Name Photos Belong To'][0]
  except:
    project_name = ''

  return_dict = {
      "section_id": section_id,
      "collection_id": collection_id,
      "collection_name": collection_name,
      "asset_type": asset_type,
      "asset_name": asset_name,
      "access_key": access_key,
      "image_url": asset_url,
      "client_name": client_name,
      "project_name": project_name
  }

  return return_dict


def get_seo_tags(image_url, topical_map, new_imgs, attempts=0, max_attempts=5):
  '''
  Gets the seo tags and topic/sub-topic classification for an image using OpenAI GPT-4 Vision Preview
  Input: image path of desired file
  Output: dict of topic, sub-topic, and seo tags
  '''

  if attempts > max_attempts:
    print("Maximum number of retries exceeded.")
    return {"error": "Max retries exceeded, operation failed."}
      
  print('in seo_tags')
  
  # Query for GPT-4
  topic_map_query = f"""
  % You are an expert web designer that can only answer questions relevent to the following Topical Map.
  % Goal: Output the topic, description, caption, seo tags, alt_tags, and filename for this image using the Topical Map provided.
  
  % TOPCIAL MAP
  ```{topical_map}```

  """
 # IF YOU CANNOT PROVIDE AN TOPIC FOR EVERY IMAGE AFTER 5 ATTEMPTS, REPLY WITH 'irrelevant'.
  topic_list = topical_map.split('\n')
  topic_list = [topic.strip() for topic in topic_list]
  topic_list.insert(0, "irrelevant")

  
  def compress_and_encode_image(url, target_size_mb=20, quality=70):
    # Fetch the image from the URL
    response = requests.get(url, stream=True)
    response.raise_for_status()

    # Open the image using Pillow, handling HEIC files
    img = None
    img_format = response.headers['Content-Type'].split('/')[-1]
    
    if img_format.lower() == 'heic':
        heif_file = pyheif.read_heif(response.content)
        img = Image.frombytes(heif_file.mode, heif_file.size, heif_file.data, "raw", heif_file.mode, heif_file.stride)
    else:
        img = Image.open(BytesIO(response.content))

    img = img.convert('RGB')

    # Compress the image by adjusting the quality
    img_bytes = BytesIO()
    img.save(img_bytes, format='JPEG', quality=quality)

    # Check if the image size is acceptable
    while img_bytes.getbuffer().nbytes > (target_size_mb * 1024 * 1024) and quality > 10:
        quality -= 5
        img_bytes = BytesIO()
        img.save(img_bytes, format='JPEG', quality=quality)

    # Encode the image content to base64
    encoded_image = base64.b64encode(img_bytes.getvalue()).decode('utf-8')

    return encoded_image

  base64_image = compress_and_encode_image(image_url)

  # REMOVE WHEN SHARING FILE
  api_key = os.environ['OPENAI_API_KEY']
  
  # Calling gpt-4 vision
  headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {api_key}"
  }
# IF YOU CANNOT PROVIDE AN TOPIC FOR EVERY IMAGE AFTER 5 ATTEMPTS, REPLY WITH 'irrelevant'.
  payload = {
    "model": "gpt-4o",
    "response_format": {"type": "json_object"},
    "messages": [
      {'role': 'system', 'content': 'You are an expert web designer that can only answer questions relevent to the following topical map.'
      },
      {
        "role": "user",
        "content": [
          {
            "type": "text",
            "text": topic_map_query +
                    """
                    % INSTRUCTIONS
                        Step 1 - Generate keywords to describe this image
                        Step 2 - Decide which topic in the Topicla Map this image fall under, using the keywords you generated and the image itself. You are only permitted to use the exact wording of the topic in the topical map. 
                        Step 2 - Provide a topic-relevant 5 sentence description for the image. Describe the image only using context relevant to the topics in the topical map. 
                                        Adhere to the following guidelines when crafting your 5 sentence description: 
                                        - Mention only the contents of the image. 
                                        - Do not mention the quality of the image. 
                                        - Ignore all personal information within the image. 
                                        - Be as specific as possible when identifying tools/items in the image.
                        Step 3 - Using the description in Step 1, create a 160 character caption. Make sure the caption is less than 160 characters.
                        Step 4 - Using the description in Step 1, create 3 topic-relevant SEO tags for this image that will drive traffic to our website. The SEO tags must be two words or less. You must give 3 SEO tags.
                        Step 5 - Using the description in Step 1, provide a topic-relevant SEO alt tag for the image that will enhance how the website is ranked on search engines.
                        Step 6 - Using the description in Step 1, provide a new and unique filename for the image as well. Use hyphens for the filename. Do not include extension.
                        Step 7 - YOU ARE ONLY PERMITTED TO OUTPUT THE TOPIC, DESCRIPTION, CAPTION, SEO, ALT_TAG, AND FILENAME IN THE FOLLOWING JSON FORMAT:
                    
                    % OUTPUT FORMAT:
                        {"topic": topic,
                        "description": description,
                        "caption": caption,
                        "seo": [seo],
                        "alt_tag": [alt tag],
                        "filename": filename
                        }
                    """
          },
          {
            "type": "image_url",
            "image_url": {
              "url": f"data:image/jpeg;base64, {base64_image}"
            }
          }
        ]
      }
    ],
    "max_tokens": 300
  }

  try:
    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
    response_data = response.json()
    if response.status_code == 200 and 'choices' in response_data and len(response_data['choices']) > 0:
        keys = ['topic', 'description', 'caption', 'seo', 'alt_tag', 'filename']
        json_dict = ast.literal_eval(response.json()['choices'][0]['message']['content'])
        if json_dict['topic'] not in topic_list:
            return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts+1)
        if set(json_dict.keys()) != set(keys):
            return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts+1)
        
        
        return json_dict
    else:
        print("API call failed or bad data, retrying...")
        return get_seo_tags(image_url, topical_map, new_imgs, attempts=attempts + 1)
  except Exception as e:
    print("Exception during API call:", str(e))
    return get_seo_tags(image_url, topical_map, new_imgs, attempts=attempts + 1)

# creates the asset in the client's brand folder
def create_ai_asset(asset_dict, topical_map, collection_name, new_imgs, tags=True):
    '''
    Creates asset from image path. Also creates seo tags, topic, and alt tag for
    image
    Input: name of initial asset, name of client, path to image, create tags boolean
    Output: id of asset
    '''
    print(asset_dict)
    # results from asset_dict
    topical_map = get_topical_map_text(topical_map)
    client_name = asset_dict['client_name']
    access_key = asset_dict['access_key']
    try:
        client_key = client_key_dict[collection_name]
    except:
        client_key = 'no key'
    if client_name != collection_name and access_key != client_key:
      print(f'{collection_name} != {client_name}')
      print(f'{access_key} != {client_key}')
      return 

    asset_name = asset_dict['asset_name']
    
    collection_id = asset_dict['collection_id']
    project_name = asset_dict['project_name']
    if collection_id == '':
      collection_dict_temp = get_collection_dict()
      collection_id = collection_dict_temp[client_name]
    image_url = asset_dict['image_url']

    # get seo, topic, and sub-topic from OpenAI API
    json_dict = get_seo_tags(image_url, topical_map, new_imgs)
    if not json_dict:
        json_dict = get_seo_tags(image_url, topical_map, new_imgs)

    # parsing out results from get_seo_tags
    topic = json_dict['topic']
    description = json_dict['description']
    caption = json_dict['caption']
    seo_tags = json_dict['seo']
    alt_tag = json_dict['alt_tag']
    image_name = json_dict['filename']

    headers = {
      'Content-Type': 'application/json',
      'Authorization': brandfolder_api
    }

    r = requests.get(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets', params={
        # use a dict with your desired URL parameters here
    }, headers=headers)

    asset_names = [item['attributes']['name'] for item in r.json()['data']]

    asset_names = new_imgs + asset_names
    
    while image_name in asset_names:
        image_name = rename(image_name)
        

    # og image url
    og_object_url = image_url


    # binary upload of image_path
    r = requests.get('https://brandfolder.com/api/v4/upload_requests', params={}, headers=headers)

    # used to upload the image
    upload_url = r.json()['upload_url']
    # container for the uploaded image to be used by the post request
    object_url = r.json()['object_url']

    def download_and_resize_image(image_url, upload_url):
        # Fetch the image from the URL
        url_response = urllib.request.urlopen(image_url)
        img_array = np.array(bytearray(url_response.read()), dtype=np.uint8)
    
        # Try to decode the image using OpenCV
        image = cv2.imdecode(img_array, -1)
    
        # If the image is None, it might be a HEIC file
        if image is None:
            heif_file = pyheif.read_heif(img_array)
            img = Image.frombytes(
                heif_file.mode,
                heif_file.size,
                heif_file.data,
                "raw",
                heif_file.mode,
                heif_file.stride
            )
            # Convert to RGB
            img = img.convert('RGB')
            # Save to a BytesIO object
            img_bytes = BytesIO()
            img.save(img_bytes, format='JPEG')
            img_bytes.seek(0)
            img_array = np.array(bytearray(img_bytes.read()), dtype=np.uint8)
            # Decode the JPEG image using OpenCV
            image = cv2.imdecode(img_array, -1)
    
        # Resize the image based on its dimensions and area
        try:
            height, width, c = image.shape
        except:
            height, width = image.shape
    
        area = width * height
        if width > height:
            # Landscape image
            if area > 667000:
                image = cv2.resize(image, (1000, 667))
        else:
            # Portrait image
            if area > 442236:
                image = cv2.resize(image, (548, 807))
    
        # Save the image to a temporary file and upload it
        with NamedTemporaryFile(delete=True, suffix='.jpg') as temp_image:
            cv2.imwrite(temp_image.name, image)
            temp_image.seek(0)
            response = requests.put(upload_url, data=temp_image)
    
        return response

    response = download_and_resize_image(image_url, upload_url)
    
    # posts image with image name

    r = requests.post(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets', json={
        # use a dict with the POST body here
        'data': {
            'attributes': [
                {
                    'name': image_name,
                    'description': description,
                    'attachments': [
                        {
                            'url': object_url,
                            'filename': f'{image_name}.jpg'
                        },
                        {
                            'url': og_object_url,
                            'filename': f'{image_name}-original.jpg'
                        }
                    ]
                }
            ]
        },
        # AI Original section key
        'section_key': 'czpq4nwz78c3cwnp6h9n44z'
      }, params={}, headers=headers)

    # id of newly created asset
    asset_id = r.json()['data'][0]['id']

    # tags and topic payloads
    tags_payload = {'data': {'attributes': [{'name': tag} for tag in seo_tags]}}


    topic_payload = {'data':
                [
                    {
                        'attributes': {
                            'value': topic
                            },
                            'relationships': {
                                'asset': {
                                    'data': {'type': 'assets', 'id': asset_id}
                                            }}
                    }]}


    alt_tag_payload = {'data':
                    [
                        {
                            'attributes': {
                                'value': alt_tag
                                },
                                'relationships': {
                                    'asset': {
                                        'data': {'type': 'assets', 'id': asset_id}
                                                }}
                        }]}

    year_payload = {'data':
                    [
                        {
                            'attributes': {
                                'value': 2024
                                },
                                'relationships': {
                                    'asset': {
                                        'data': {'type': 'assets', 'id': asset_id}
                                                }}
                        }]}

    client_payload = {'data':
                [
                    {
                        'attributes': {
                            'value': client_name
                            },
                            'relationships': {
                                'asset': {
                                    'data': {'type': 'assets', 'id': asset_id}
                                            }}
                    }]}
    caption_payload = {'data':
            [
                {
                    'attributes': {
                        'value': caption
                        },
                        'relationships': {
                            'asset': {
                                'data': {'type': 'assets', 'id': asset_id}
                                        }}
                }]}

    project_payload = {'data':
            [
                {
                    'attributes': {
                        'value': project_name
                        },
                        'relationships': {
                            'asset': {
                                'data': {'type': 'assets', 'id': asset_id}
                                        }}
                }]}

    year_id = 'k8vr5chnkw3nrnrpkh4f9fqm'
    client_name_id = 'x56t6r9vh9xjmg5whtkmp'
    # Tone ID: px4jkk2nqrf9h6gp7wwxnhvz
    # Location ID: nm6xqgcf5j7sw8w994c6sc8h
    alt_tag_id = 'vk54n6pwnxm27gwrvrzfb'
    topic_id = '9mcg3rgm5mf72jqrtw2gqm7t'
    project_name_id = '5zpqwt2r348sjbnc6rpxc96'
    caption_id = 'cmcbhcc5nmm72v57vrxppw2x'
    # Original Project Images Section ID: c5vm8cnh9jvkjbh7r43qxkv
    # Edited Project Images Section ID: 5wpz2s9m3g7ctcjpm4vrt46

    r_asset = requests.post(f'https://brandfolder.com/api/v4/assets/{asset_id}/tags', json=tags_payload, params={}, headers=headers)

    # alt_tags
    r_topic = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{topic_id}/custom_field_values', json=
          topic_payload
        , params={
      }, headers=headers)

    r_alt_tag = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{alt_tag_id}/custom_field_values', json=
          alt_tag_payload
        , params={
      }, headers=headers)

    r_year = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{year_id}/custom_field_values', json=
          year_payload
        , params={
      }, headers=headers)

    r_client = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{client_name_id}/custom_field_values', json=
          client_payload
        , params={
      }, headers=headers)

    r_project = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{project_name_id}/custom_field_values', json=
          project_payload
        , params={
      }, headers=headers)

    r_caption = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{caption_id}/custom_field_values', json=
        caption_payload
      , params={
    }, headers=headers)

    return image_name

def delete_og_asset(asset_id):
  headers = {
      'Accept': 'application/json',
      'Authorization': 'eyJhbGciOiJIUzI1NiJ9.eyJvcmdhbml6YXRpb25fa2V5IjoiZmY0cmt0NDNoMzRtMjVoa2duNWJteDlmIiwiaWF0IjoxNzA1OTQ4NjI3LCJ1c2VyX2tleSI6IjhyNnhxeDR6bTdyN2Z4NnJqY25jM2IzIiwic3VwZXJ1c2VyIjpmYWxzZX0.xUPT9j08a0THBwW_0GkQjllJxmjeDGtcPeoIOu_w9Zs'
    }

  r = requests.delete(f'https://brandfolder.com/api/v4/assets/{asset_id}', params={
      # use a dict with your desired URL parameters here
  }, headers=headers)

  return

def run_preprocess_ai(topical_map, client_name, section_type, progress=gr.Progress()):
  section_id = section_key_dict[section_type]
  headers = {
    'Content-Type': 'application/json',
    'Authorization': brandfolder_api
  }
  collection_dict = get_collection_dict()
  collection_id = collection_dict[client_name]
  page = 1
  pre_process_ids = []
  run = True
  while run == True:
    if section_type == 'Pre-Processed Images':
        r = requests.get(f'https://brandfolder.com/api/v4/brandfolders/988cgqcg8xsrr5g9h7gtsqkg/assets?include=section,custom_fields&fields=created_at&page={page}&per=3000&sort_by=created_at&order=DESC', params={}, headers=headers)
    elif section_type == 'Original Project Assets':
        r = requests.get(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets?include=section,custom_fields&fields=created_at&page={page}&per=3000&sort_by=created_at&order=DESC', params={}, headers=headers)    
    page+=1
    asset_names = [item['id'] for item in r.json()['data'] if item['relationships']['section']['data']['id'] == section_id]
    if asset_names in pre_process_ids:
      run = False
    else:
        pre_process_ids.append(asset_names)
  asset_names = sum(pre_process_ids, [])
  
  new_imgs = []
  for asset_id in progress.tqdm(asset_names, desc="Uploading..."):
    try:
        time.sleep(2)
        asset_dict = get_asset_info(asset_id)
        new_img = create_ai_asset(asset_dict, topical_map, client_name, new_imgs)
        new_imgs.append(new_img)
        if new_img:
          delete_og_asset(asset_id)
    except Exception as e:
        print(f'An unexpected error occured processing {asset_dict["asset_name"]}: {e}')
  gr.Info('Images have been processed!')
  return