Spaces:
Runtime error
Runtime error
File size: 39,447 Bytes
0f95ed0 8974786 2bf26b2 8974786 1e6e8f4 3faa472 61e8b34 e9e2262 6891a50 ff5d251 4a54cb5 794c221 ff5d251 8974786 cf3c6a7 ea9ff3b 8974786 67ed569 8974786 67ed569 8974786 ea9ff3b ee7048a 8974786 ea9ff3b 8974786 ea9ff3b 8974786 ea9ff3b 8974786 335f2b8 8974786 335f2b8 8974786 ee7048a 1e6e8f4 3faa472 67ed569 c33ebfc 1e6e8f4 ee7048a 67ed569 81b0e79 ee7048a 8974786 fc2e936 8974786 a9e7ced 8974786 bc463f2 eb51652 8974786 ea9ff3b 8974786 ea9ff3b a9e7ced ea9ff3b 8974786 ea9ff3b 8974786 2494993 ea9ff3b b76934f ea9ff3b b404a22 ea9ff3b 7c28257 ea9ff3b 8974786 bcbc361 e4ca787 bcbc361 c6654ae dd2b75c c6654ae 8974786 d523c02 8974786 fc2e936 d8cda22 e43f8fd ea9ff3b e43f8fd 9e293cd d8cda22 d523c02 d8cda22 d523c02 8974786 ea9ff3b 8974786 fc2e936 8974786 c6654ae 8974786 bcbc361 fc2e936 ef487d1 fc2e936 8974786 ec1e386 aaddf35 8974786 fc2e936 8974786 c5c4cdd 8974786 fc2e936 8974786 fc2e936 8974786 fc2e936 9e293cd b252230 9e293cd d8cda22 ce14c8c 619d725 cb6091a 8974786 ce14c8c f5915bc ce14c8c faaa1c6 ce14c8c 8974786 fa637cb 8974786 fa637cb 8974786 ee7048a 8974786 2ff8262 8974786 37c7b29 8974786 d68f0a8 8974786 4e66b49 8974786 0253459 0c5df9d 85d2eb2 384b02f 0e8235c 6c89378 5caa361 0253459 d523c02 ee7048a 47c70c8 8974786 9d1a042 0c5df9d 8974786 4e66b49 f005407 ee7048a 45eb824 9d1a042 ee7048a 8974786 85affca 8974786 ef6eb2d d2be71c 324f6ae edde350 794c221 8b767b8 1def1a6 b858839 0ea38b6 794c221 f5bac48 794c221 d4c0f02 8974786 90abc26 a811d47 14e12cf a811d47 14e12cf 7411f15 8974786 b28a50d cdddc03 1e7cd3d 4a54cb5 1e7cd3d 17811a8 1e7cd3d 4a54cb5 b28a50d 7a038a6 4a54cb5 b28a50d 4a54cb5 90abc26 e55b60f 01f36a1 edde350 40724c2 a9bf8a7 45aa14a a9bf8a7 324f6ae edde350 48bdbe9 edde350 61e8b34 794c221 b858839 61e8b34 f5bac48 edde350 91e8c68 4a54cb5 8974786 11dac22 6040460 edde350 79844d7 edde350 94e53d0 01e4942 7bac7ef ceed51d 2bf26b2 d4d0970 fd3c05e a811d47 2bf26b2 4a54cb5 1e7cd3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
import openai
from openai import OpenAI
import requests
import base64
import os
import ast
import cv2
from PIL import Image, ImageSequence
from tempfile import NamedTemporaryFile
import time
from zipfile import ZipFile
import gradio as gr
from docx import Document
from io import BytesIO
import pyheif
import pandas as pd
import numpy as np
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
)
import bf_trigger
import chat_engine as chat_gen
import content_generator as con_gen
# for exponential backoff
# FUNCTIONS
brandfolder_api = os.environ['BRANDFOLDER_API_KEY']
def get_asset_info(asset_id):
'''
Takes information from asset_id
Input: asset_id
Output: collection_id, collection_name, section_id
'''
# asset_id = data['data']['attributes']['key']
headers = {
'Content-Type': 'application/json',
'Authorization': brandfolder_api
}
r = requests.get(f'https://brandfolder.com/api/v4/assets/{asset_id}?include=section,collections,custom_fields,attachments', params={}, headers=headers)
# gets section_id
try:
section_id = r.json()['data']['relationships']['section']['data']['id']
except:
section_id = ''
# gets collection_id
# gets collection_name
try:
collection_id = r.json()['data']['relationships']['collections']['data'][0]['id']
collection_name = [item['attributes']['name'] for item in r.json()['included'] if item['type']=='collections'][0]
except:
collection_id = ''
collection_name = ''
# gets asset_name, asset_type, and asset_url
try:
asset_type = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['value']=='Photo'][0]
except:
asset_type = ''
try:
asset_name = r.json()['data']['attributes']['name']
except:
asset_name = ''
try:
access_key = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'What is your Access Code?'][0]
except:
access_key = ''
try:
asset_url = [item['attributes']['url'] for item in r.json()['included'] if item['type'] == 'attachments'][0]
except:
asset_url = ''
try:
client_name = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'Client Name'][0]
except:
client_name = ''
try:
project_name = [item['attributes']['value'] for item in r.json()['included'] if item['type'] == 'custom_field_values' and item['attributes']['key'] == 'List Project Name Photos Belong To'][0]
except:
project_name = ''
return_dict = {
"section_id": section_id,
"collection_id": collection_id,
"collection_name": collection_name,
"asset_type": asset_type,
"asset_name": asset_name,
"access_key": access_key,
"image_url": asset_url,
"client_name": client_name,
"project_name": project_name
}
return return_dict
def get_all_collection_dict():
headers = {
'Accept': 'application/json',
'Authorization': brandfolder_api
}
r = requests.get('https://brandfolder.com/api/v4/brandfolders/988cgqcg8xsrr5g9h7gtsqkg/collections?per=300', params={
# use a dict with your desired URL parameters here
}, headers=headers)
temp = r.json()['data']
collection_dict = {item['attributes']['name']:item['id'] for item in temp}
return collection_dict
def get_collection_names():
collection_dict = get_collection_dict()
return list(collection_dict.keys())
def rename(filename):
client = OpenAI()
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant specializing in renaming files."},
{"role": "user", "content": f"Provide a similar name for this filename: {filename}. Only return the filename and use hyphens in the filename."}
]
)
return completion.choices[0].message.content
def get_topical_map(path):
document = Document(path)
extracted_text = []
for paragraph in document.paragraphs:
# Get the left indentation of the current paragraph (if any)
left_indent = paragraph.paragraph_format.left_indent
if left_indent == None:
continue
else:
indent_level = int(left_indent.pt / 20) # Convert Twips to points and then to a simple indentation level
# You might want to adjust the logic below depending on how you want to represent indentation
indent_symbol = " " * indent_level # This creates a number of spaces based on the indentation level; adjust as needed
# Construct the paragraph text with indentation representation
formatted_text = f"{indent_symbol}{paragraph.text}"
extracted_text.append(formatted_text)
return "\n".join(extracted_text)
# gets a list of images from the google drive folder
def get_imgs_from_folder(image_files, zipfile):
# image file types
IMAGE_TYPES = ['jpg','jpeg','gif','bmp','png', 'jpe', 'heic', 'tiff', 'webp', 'heif', 'svg', 'raw', 'psd']
# file types
FILE_TYPES = ['jpg','jpeg','gif','bmp','png', 'jpe', 'zip', 'mp4', 'heic', 'tiff', 'webp', 'heif', 'svg', 'raw', 'psd']
# gets all the image paths from the zipfile
zip = ZipFile(zipfile)
zip_list = zip.namelist()
image_files.extend([f for f in zip_list if f.split('.')[-1].lower() in IMAGE_TYPES and f[0] != '_'])
return image_files
def get_seo_tags(image_path, topical_map, new_imgs, attempts=0, max_attempts=6):
'''
Gets the seo tags and topic/sub-topic classification for an image using OpenAI GPT-4 Vision Preview
Input: image path of desired file
Output: dict of topic, sub-topic, and seo tags
'''
if attempts > max_attempts:
print("Maximum number of retries exceeded.")
return {"error": "Max retries exceeded, operation failed."}
print('in seo_tags')
filenames = ', '.join(new_imgs)
# Query for GPT-4
topic_map_query = f"""
% You are an expert web designer that can only answer questions relevent to the following Topical Map.
% Goal: Output the topic, description, caption, seo tags, alt_tags, and filename for this image using the Topical Map provided.
% TOPCIAL MAP
```{topical_map}```
"""
# IF YOU CANNOT PROVIDE AN TOPIC FOR EVERY IMAGE AFTER 5 ATTEMPTS, REPLY WITH 'irrelevant'.
topic_list = topical_map.split('\n')
topic_list = [topic.strip() for topic in topic_list]
topic_list.insert(0, "irrelevant")
def encode_image(image_path):
# Check the file size (in bytes)
file_size = os.path.getsize(image_path)
# Define the maximum file size for compression (20 MB)
max_size = 20 * 1024 * 1024 # 20 MB in bytes
if image_path.lower().endswith('.heic'):
# Read the HEIC file
heif_file = pyheif.read(image_path)
# Convert to a PIL image
image = Image.frombytes(
heif_file.mode,
heif_file.size,
heif_file.data,
"raw",
heif_file.mode,
heif_file.stride,
)
elif image_path.lower().endswith('.gif'):
# Open GIF image
with Image.open(image_path) as img:
# Extract the first frame of the GIF
image = img.convert('RGB')
else:
# Open other image types with PIL directly
image = Image.open(image_path)
# Convert image to RGB if it has an incompatible mode
if image.mode not in ['RGB', 'L']: # L is for grayscale
image = image.convert('RGB')
# Use in-memory buffer for processing
with BytesIO() as img_buffer:
if file_size > max_size:
# Adjust the quality to reduce the file size
image.save(img_buffer, format='JPEG', quality=75)
else:
# Save the image without changing the quality if not needed
image.save(img_buffer, format='JPEG', quality=85)
# Seek to the beginning of the stream
img_buffer.seek(0)
# Read the JPEG image data and encode it in base64
return base64.b64encode(img_buffer.read()).decode('utf-8')
print(image_path)
base64_image = encode_image(image_path)
# REMOVE WHEN SHARING FILE
api_key = os.environ['OPENAI_API_KEY']
# Calling gpt-4 vision
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
# IF YOU CANNOT PROVIDE AN TOPIC FOR EVERY IMAGE AFTER 5 ATTEMPTS, REPLY WITH 'irrelevant'.
payload = {
"model": "gpt-4o",
"response_format": {"type": "json_object"},
"messages": [
{'role': 'system', 'content': 'You are an expert web designer that can only answer questions relevent to the following topical map.'
},
{
"role": "user",
"content": [
{
"type": "text",
"text": topic_map_query +
"""
% INSTRUCTIONS
Step 1 - Generate keywords to describe this image
Step 2 - Decide which topic in the Topicla Map this image fall under, using the keywords you generated and the image itself. You are only permitted to use the exact wording of the topic in the topical map.
Step 2 - Provide a topic-relevant 5 sentence description for the image. Describe the image only using context relevant to the topics in the topical map.
Adhere to the following guidelines when crafting your 5 sentence description:
- Mention only the contents of the image.
- Do not mention the quality of the image.
- Ignore all personal information within the image.
- Be as specific as possible when identifying tools/items in the image.
Step 3 - Using the description in Step 1, create a 160 character caption. Make sure the caption is less than 160 characters.
Step 4 - Using the description in Step 1, create 3 topic-relevant SEO tags for this image that will drive traffic to our website. The SEO tags must be two words or less. You must give 3 SEO tags.
Step 5 - Using the description in Step 1, provide a topic-relevant SEO alt tag for the image that will enhance how the website is ranked on search engines.
Step 6 - Using the description in Step 1, provide a new and unique filename for the image as well. Use hyphens for the filename. Do not include extension.
Step 7 - YOU ARE ONLY PERMITTED TO OUTPUT THE TOPIC, DESCRIPTION, CAPTION, SEO, ALT_TAG, AND FILENAME IN THE FOLLOWING JSON FORMAT:
% OUTPUT FORMAT:
{"topic": topic,
"description": description,
"caption": caption,
"seo": [seo],
"alt_tag": [alt tag],
"filename": filename
}
"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64, {base64_image}"
}
}
]
}
],
"max_tokens": 300
}
try:
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
response_data = response.json()
print(response_data)
if response.status_code == 200 and 'choices' in response_data and len(response_data['choices']) > 0:
keys = ['topic', 'description', 'caption', 'seo', 'alt_tag', 'filename']
json_dict = ast.literal_eval(response.json()['choices'][0]['message']['content'])
if json_dict['topic'] not in topic_list:
return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts+1)
if set(json_dict.keys()) != set(keys):
return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts+1)
return json_dict
else:
print("API call failed or bad data, retrying...")
return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts + 1)
except Exception as e:
time.sleep(5*attempts)
print("Exception during API call:", str(e))
return get_seo_tags(image_path, topical_map, new_imgs, attempts=attempts + 1)
def read_image(image_path):
if image_path.lower().endswith('.heic'):
# Read and convert HEIC file
heif_file = pyheif.read(image_path)
image = Image.frombytes(
heif_file.mode,
heif_file.size,
heif_file.data,
"raw",
heif_file.mode,
heif_file.stride,
)
# Convert PIL image to OpenCV format
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
elif image_path.lower().endswith('.gif'):
# Open GIF and convert the first frame to RGB
with Image.open(image_path) as img:
for frame in ImageSequence.Iterator(img):
frame = frame.convert('RGB')
# Convert PIL image to OpenCV format
image = np.array(frame)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
break # Only process the first frame
else:
# Use OpenCV for other formats
image = cv2.imread(image_path)
return image
def process_image(image_path):
image = read_image(image_path)
height, width, c = image.shape
area = width * height
if width > height:
# Landscape image
if area > 667000:
image = cv2.resize(image, (1000, 667))
else:
# Portrait image
if area > 442236:
image = cv2.resize(image, (548, 807))
return image
def convert_heic_to_jpeg(heic_path):
# Read the HEIC file
heif_file = pyheif.read(heic_path)
# Convert to a PIL image
image = Image.frombytes(
heif_file.mode,
heif_file.size,
heif_file.data,
"raw",
heif_file.mode,
heif_file.stride,
)
# Convert image to JPEG in memory
jpeg_buffer = BytesIO()
image.save(jpeg_buffer, format="JPEG")
jpeg_buffer.seek(0)
return jpeg_buffer
def upload_image(image_path, upload_url):
# Check if the image is a HEIC file
print(image_path)
if image_path.lower().endswith('.heic'):
# Convert HEIC to JPEG
data = convert_heic_to_jpeg(image_path)
else:
# Open other image types directly
data = open(image_path, 'rb')
# Upload the image
response = requests.put(upload_url, data=data)
# Ensure you close the file stream if opened directly
if not image_path.lower().endswith('.heic'):
data.close()
return response
# creates the asset in the client's brand folder
def create_asset(client_name, collection_id, image_path, topical_map, new_imgs, tags=True, project_bool=False):
'''
Creates asset from image path. Also creates seo tags, topic, and alt tag for
image
Input: name of client, path to image, create tags boolean
Output: id of asset
'''
# get seo, topic, and sub-topic from OpenAI API
json_dict = get_seo_tags(image_path, topical_map, new_imgs)
if not json_dict:
json_dict = get_seo_tags(image_path, topical_map, new_imgs)
topic = json_dict['topic']
description = json_dict['description']
caption = json_dict['caption']
seo_tags = json_dict['seo']
alt_tag = json_dict['alt_tag']
image_name = json_dict['filename']
counter = 1
while image_name in new_imgs:
image_name = f'{image_name}_{counter}'
counter += 1
headers = {
'Accept': 'application/json',
'Authorization': os.environ['BRANDFOLDER_API_KEY']
}
r = requests.get(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets', params={
# use a dict with your desired URL parameters here
}, headers=headers)
asset_names = [item['attributes']['name'] for item in r.json()['data']]
asset_names = new_imgs + asset_names
while image_name in asset_names:
image_name = rename(image_name)
# binary upload of image_path
r = requests.get('https://brandfolder.com/api/v4/upload_requests', params={}, headers=headers)
# used to upload the image
upload_url = r.json()['upload_url']
# container for the uploaded image to be used by the post request
og_object_url = r.json()['object_url']
response = upload_image(image_path, upload_url)
# binary upload of image_path
r = requests.get('https://brandfolder.com/api/v4/upload_requests', params={}, headers=headers)
# used to upload the image
upload_url = r.json()['upload_url']
# container for the uploaded image to be used by the post request
object_url = r.json()['object_url']
image = process_image(image_path)
# image = sharpen_image(image)
with NamedTemporaryFile(delete=True, suffix='.jpg') as temp_image:
# fp = TemporaryFile()
cv2.imwrite(temp_image.name, image, [int(cv2.IMWRITE_JPEG_QUALITY), 70])
# fp.seek(0)
response = requests.put(upload_url, data=temp_image)
# fp.close()
# posts image with image name
r = requests.post(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets', json={
# use a dict with the POST body here
'data': {
'attributes': [
{
'name': image_name,
'description': description,
'attachments': [
{
'url': object_url,
'filename': f'{image_name}.jpg'
},
{
'url': og_object_url,
'filename': f'{image_name}-original.jpg'
}
]
}
]
},
# AI Processed section key
'section_key': 'czpq4nwz78c3cwnp6h9n44z'
}, params={}, headers=headers)
# id of newly created asset
asset_id = r.json()['data'][0]['id']
# tags and topic payloads
tags_payload = {'data': {'attributes': [{'name': tag} for tag in seo_tags]}}
topic_payload = {'data':
[
{
'attributes': {
'value': topic
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
alt_tag_payload = {'data':
[
{
'attributes': {
'value': alt_tag
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
year_payload = {'data':
[
{
'attributes': {
'value': 2024
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
client_payload = {'data':
[
{
'attributes': {
'value': client_name
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
caption_payload = {'data':
[
{
'attributes': {
'value': caption
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
year_id = 'k8vr5chnkw3nrnrpkh4f9fqm'
client_name_id = 'x56t6r9vh9xjmg5whtkmp'
# Tone ID: px4jkk2nqrf9h6gp7wwxnhvz
# Location ID: nm6xqgcf5j7sw8w994c6sc8h
alt_tag_id = 'vk54n6pwnxm27gwrvrzfb'
topic_id = '9mcg3rgm5mf72jqrtw2gqm7t'
project_name_id = '5zpqwt2r348sjbnc6rpxc96'
caption_id = 'cmcbhcc5nmm72v57vrxppw2x'
# Original Project Images Section ID: c5vm8cnh9jvkjbh7r43qxkv
# Edited Project Images Section ID: 5wpz2s9m3g7ctcjpm4vrt46
r_asset = requests.post(f'https://brandfolder.com/api/v4/assets/{asset_id}/tags', json=tags_payload, params={}, headers=headers)
# alt_tags
r_topic = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{topic_id}/custom_field_values', json=
topic_payload
, params={
}, headers=headers)
r_alt_tag = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{alt_tag_id}/custom_field_values', json=
alt_tag_payload
, params={
}, headers=headers)
r_year = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{year_id}/custom_field_values', json=
year_payload
, params={
}, headers=headers)
r_client = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{client_name_id}/custom_field_values', json=
client_payload
, params={
}, headers=headers)
r_caption = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{caption_id}/custom_field_values', json=
caption_payload
, params={
}, headers=headers)
if project_bool == 'Yes':
project_name = str(image_path).split('/')[-2]
project_payload = {'data':
[
{
'attributes': {
'value': project_name
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
r_project = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{project_name_id}/custom_field_values', json=
project_payload
, params={
}, headers=headers)
return image_name
def create_asset_no_ai(client_name, collection_id, image_path, project_bool=False):
'''
Creates an asset without going through the AI process
'''
image_name = str(image_path).split('/')[-1].split('.')[0]
headers = {
'Accept': 'application/json',
'Authorization': 'eyJhbGciOiJIUzI1NiJ9.eyJvcmdhbml6YXRpb25fa2V5IjoiZmY0cmt0NDNoMzRtMjVoa2duNWJteDlmIiwiaWF0IjoxNzA1OTQ4NjI3LCJ1c2VyX2tleSI6IjhyNnhxeDR6bTdyN2Z4NnJqY25jM2IzIiwic3VwZXJ1c2VyIjpmYWxzZX0.xUPT9j08a0THBwW_0GkQjllJxmjeDGtcPeoIOu_w9Zs'
}
# binary upload of image_path
r = requests.get('https://brandfolder.com/api/v4/upload_requests', params={}, headers=headers)
# used to upload the image
upload_url = r.json()['upload_url']
# container for the uploaded image to be used by the post request
object_url = r.json()['object_url']
# uploads the image
response = upload_image(image_path, upload_url)
r = requests.post(f'https://brandfolder.com/api/v4/collections/{collection_id}/assets', json={
# use a dict with the POST body here
'data': {
'attributes': [
{
'name': image_name,
'attachments': [
{
'url': object_url,
'filename': f'{image_name}.jpg'
}
]
}
]
},
# Original Project Assets
'section_key': 'c5vm8cnh9jvkjbh7r43qxkv'
}, params={}, headers=headers)
# id of newly created asset
asset_id = r.json()['data'][0]['id']
year_payload = {'data':
[
{
'attributes': {
'value': 2024
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
client_payload = {'data':
[
{
'attributes': {
'value': client_name
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
year_id = 'k8vr5chnkw3nrnrpkh4f9fqm'
client_name_id = 'x56t6r9vh9xjmg5whtkmp'
r_year = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{year_id}/custom_field_values', json=
year_payload
, params={
}, headers=headers)
r_client = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{client_name_id}/custom_field_values', json=
client_payload
, params={
}, headers=headers)
if project_bool.lower() == 'yes':
project_name_id = '5zpqwt2r348sjbnc6rpxc96'
project_name = str(image_path).split('/')[-2]
project_payload = {'data':
[
{
'attributes': {
'value': project_name
},
'relationships': {
'asset': {
'data': {'type': 'assets', 'id': asset_id}
}}
}]}
r_project = requests.post(f'https://brandfolder.com/api/v4/custom_field_keys/{project_name_id}/custom_field_values', json=
project_payload
, params={
}, headers=headers)
return
def create_collection(collection_name):
'''
Creates collection with collection_name and tagline
Input: collection name and tagline
Output: request response
'''
headers = {
'Accept': 'application/json',
'Authorization': os.environ['BRANDFOLDER_API_KEY']
}
r = requests.post('https://brandfolder.com/api/v4/brandfolders/988cgqcg8xsrr5g9h7gtsqkg/collections', json={
# use a dict with the POST body here
'data': {
'attributes': {
'name': collection_name
}
}
}, params={}, headers=headers)
collection_id = r.json()['data']['id']
return collection_id
def get_collection_id(collection_name):
'''
Creates collection with collection_name and tagline
Input: collection name and tagline
Output: request response
'''
headers = {
'Accept': 'application/json',
'Authorization': os.environ['BRANDFOLDER_API_KEY']
}
r = requests.post('https://brandfolder.com/api/v4/brandfolders/988cgqcg8xsrr5g9h7gtsqkg/collections', json={
# use a dict with the POST body here
'data': {
'attributes': {
'name': collection_name
}
}
}, params={}, headers=headers)
collection_id = r.json()['data']['id']
return collection_id
# get ids of existing collections
def get_collection_dict():
headers = {
'Accept': 'application/json',
'Authorization': os.environ['BRANDFOLDER_API_KEY']
}
r = requests.get('https://brandfolder.com/api/v4/brandfolders/988cgqcg8xsrr5g9h7gtsqkg/collections?per=200', params={
# use a dict with your desired URL parameters here
}, headers=headers)
temp = r.json()['data']
collection_dict = dict(sorted({item['attributes']['name']:item['id'] for item in temp}.items()))
return collection_dict
def import_client_data(client_name, zipfile, topical_map, password, project_bool, ai_bool, progress=gr.Progress(), create=False):
'''
Takes the client neame and the client zipfile path to import all image files in the google drive into brandfolder under a collection
with the client's name
Input: client name (str), client_drive_path (str)
Output: Completed Brandfolder
'''
print(zipfile)
if client_name == None:
raise gr.Error("Please choose a client")
if password != os.environ['BRANDFOLDER_PASSWORD']:
raise gr.Error("Incorrect Password")
if zipfile == None:
raise gr.Error("Please upload a zipfile")
if zipfile.split('.')[-1] != 'zip':
raise gr.Error("Client Photos must be in a zipfile")
if ai_bool.lower() == 'on':
if topical_map == None:
raise gr.Error("Please upload a topical map")
if topical_map.split('.')[-1] != 'docx':
raise gr.Error("Topical Map must be a docx file")
topical_map = get_topical_map(topical_map)
# get all collection ID names
headers = {
'Accept': 'application/json',
'Authorization': os.environ['BRANDFOLDER_API_KEY']
}
r = requests.get('https://brandfolder.com/api/v4/collections?per=200', params={
# use a dict with your desired URL parameters here
}, headers=headers)
collection_dict = {entry['attributes']['name']:entry['id'] for entry in r.json()['data']}
if client_name not in list(collection_dict.keys()):
if create==True:
# creates the collection and gets the collection id
collection_id = create_collection(client_name)
else:
AssertionError(f'Client Name: {client_name} does not exist in this Brandfolder')
else:
collection_id = collection_dict[client_name]
# gets all image files from the google drive folder
img_lists = []
img_dict = {}
for zip in zipfile:
zip_name = ZipFile(zip.name)
unpack_list = get_imgs_from_folder([], zip)
for img in unpack_list:
img_dict.update({img:zip_name})
img_lists.append(unpack_list)
img_list = sum(img_lists, [])
new_imgs = []
error_imgs = []
error_imgs_text = 'No errors detected.'
# iterates all images and puts them into brandfolder with AI elements
for img in progress.tqdm(img_list, desc="Uploading..."):
zip = img_dict[img]
img = zip.extract(img)
print(client_name)
try:
if ai_bool.lower() == 'on':
time.sleep(15)
new_img = create_asset(client_name, collection_id, img, topical_map, new_imgs, project_bool=project_bool)
new_imgs.append(new_img)
elif ai_bool.lower() == 'off':
create_asset_no_ai(client_name, collection_id, img, project_bool=project_bool)
except Exception as e:
error_imgs.append(f'{str(img)}; error: {e}\n')
print(f'An unexpected error occured processing {img}: {e}')
gr.Info('Images have been uploaded!')
if error_imgs:
error_imgs_text = '\n'.join(error_imgs)
return "Images Uploaded", error_imgs_text
def get_collection_names():
collection_dict = get_collection_dict()
return list(collection_dict.keys())
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def chatbot_response(message, history, chat_engine):
stream = chat_engine.stream_chat(message, chat_history=history)
return stream
def generate_content(csv_file, query_engine):
print(csv_file)
df = con_gen.get_content_csv(csv_file, query_engine[-1])
data_preview = df.head(10)
file_name = './output.csv'
df.to_csv('./output.csv')
completion_status = "Done"
return completion_status, data_preview, gr.DownloadButton(label='Download AI Content', value=file_name, visible=True)
collection_names = get_collection_names()
with gr.Blocks() as block:
gr.Markdown("""
# Brandfolder Zipfile Dashboard
This dashboard is for uploading photos from a zipfile to a brandfolder collection.
""")
chat_engine = gr.State([])
query_engine = gr.State([])
def generate_chat_engine(dna_documents, chat_engine, query_engine):
chat, query, response = chat_gen.get_chat_engine(dna_documents)
chat_engine.append(chat)
query_engine.append(query)
return chat_engine, query_engine, response
with gr.Column(visible=True, elem_id='login') as login:
password = gr.Textbox(label='Enter Password')
dna_documents = gr.File(label='Upload DNA Documents', file_count='multiple')
chat_gen_btn = gr.Button("Generate DNA LLM")
chat_gen_progress = gr.Label(label='LLM Created')
with gr.Tab("Zipfile Upload"):
with gr.Column(visible=True, elem_id='zipfile') as zipfile:
with gr.Row():
with gr.Column():
options = get_collection_names()
selection = gr.Dropdown(options, label='Choose Existing Collection', info='If creating a new section, select Create a Collection')
gr.Markdown('## Upload zipfile containing client photos below')
zipfile = gr.File(label='Client Photos (must be zipfile)', file_count='multiple', file_types=['.zip'], interactive=False)
upload_btn = gr.UploadButton("Upload Zipfile(s)", file_count='multiple')
ai_bool = gr.Radio(choices=['On', 'Off'], label='AI Algorithm?', info = 'Would you like to use the AI Algorithm to upload these images?')
project_bool = gr.Radio(choices=['Yes', 'No'], label='Project Names?', info='Would you like to include project names for these images?')
gr.Markdown('## Upload topical map document for the client below')
topical_map = gr.File(label='Topical Map (must be docx)', file_types=['.docx'])
algorithm = gr.Button('Run Algorithm')
upload = gr.Label(label='Uploader')
err_imgs = gr.Textbox(label="Images Not Processed")
stop = gr.Button("Stop Run")
with gr.Tab("Brandfolder AI Trigger"):
with gr.Column(visible=True, elem_id='trigger') as trigger:
gr.Markdown('''
# Run AI in Brandfolder
This button runs the AI algorithm using all the images stored in the Pre-Processed Images section in Brandfolder.
The algorithm will move the new processed images to the AI Processed Images.
ALL COPIES OF THE IMAGES IN THE PRE-PROCESSED SECTION WILL BE DELETED AFTER PUSHING THIS BUTTON
''')
bf_options = get_collection_names()
bf_selection = gr.Dropdown(bf_options, label='Choose Existing Collection')
section = gr.Radio(choices=['Pre-Processed Images', 'Original Project Assets'], label='Which Sections is the data in?')
bf_topical_map = gr.File(label='Topical Map (must be docx)', file_types=['.docx'])
bf_button = gr.Button('Run AI algorithm for Pre-Processed Images')
bf_upload = gr.Label(label='Uploader')
stop_bf = gr.Button('Stop Run')
with gr.Tab("DNA LLM"):
with gr.Column(visible=True):
gr.Markdown('''
# DNA LLM
This DNA chatbot uses the uploaded dna documents to answer questions
''')
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, chat_engine):
print(history)
user_message = history[-1][0]
# chat_history = [(ChatMessage(role=message[1],content=message['content'])) for message in history]
bot_message = chatbot_response(user_message, history[-1][1], chat_engine[-1])
history[-1][1] = ""
for character in bot_message.response_gen:
history[-1][1] += character
time.sleep(0.1)
yield history
with gr.Tab("Website Content Spreadsheet"):
with gr.Column(visible=True):
gr.Markdown('''
# Website Content Spreadsheet
Upload a spreadsheet with descriptions of website content
''')
website_layout_file = gr.File(label='Website Layout File')
con_gen_btn = gr.Button('Generate Content')
data_preview = gr.DataFrame(label='Processed DataFrame Preview')
status = gr.Textbox(label='Completion Status')
download_btn = gr.DownloadButton(label='Download Content', visible=False)
# with gr.Column(visible=False, elem_id='offline') as offline:
# gr.Markdown('''
# # AI Processed Images Algorithm
# Runs the AI algorithm over the images in the AI Processed Images Section.
# Use this only when the Brandfolder API is not uploading images properly.
# The Images will not be reduced but the tags, descriptions, etc. for the images will be populated.
# ''')
# offline_options = get_collection_names()
# offline_selection = gr.Dropdown(offline_options, label='Choose Existing Collection')
# offline_topical_map = gr.File(label='Topical Map (must be docx)', file_types=['.docx'])
# offline_button = gr.Button('Run AI algorithm for AI Processed Images Section')
# offline_upload = gr.Label(label='Uploader')
# stop_offline = gr.Button("Stop Run")
# selection.select(fn=get_collection_names, outputs=[selection])
# download_btn.click(download_file)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, chat_engine], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
con_gen_btn.click(generate_content, inputs=[website_layout_file, query_engine], outputs=[status, data_preview, download_btn])
algo_event = algorithm.click(fn=import_client_data, inputs=[selection, zipfile, topical_map, password, project_bool, ai_bool], outputs=[upload, err_imgs])
bf_event = bf_button.click(fn=bf_trigger.run_preprocess_ai, inputs=[bf_topical_map, bf_selection, section], outputs=[bf_upload])
# offline_event = offline_button.click(fn=offline_update.run_preprocess_ai, inputs=[offline_topical_map, offline_selection], outputs=[offline_upload])
stop.click(fn=None, inputs=None, outputs=None, cancels=[algo_event])
stop_bf.click(fn=None, inputs=None, outputs=None, cancels=[bf_event])
upload_btn.upload(upload_file, upload_btn, zipfile)
chat_gen_btn.click(generate_chat_engine, inputs=[dna_documents, chat_engine, query_engine], outputs=[chat_engine, query_engine, chat_gen_progress])
# stop_offline.click(fn=None, inputs=None, outputs=None, cancels=[offline_event])
block.queue(default_concurrency_limit=5)
block.launch() |