Spaces:
Sleeping
Sleeping
File size: 5,358 Bytes
9d8d919 e757fca 9d8d919 e757fca 9d8d919 e757fca 9d8d919 f6172d7 9d8d919 f6172d7 9d8d919 e757fca 9d8d919 e757fca 9d8d919 f6172d7 9d8d919 e757fca 9d8d919 e757fca 9d8d919 f6172d7 9d8d919 e757fca 9d8d919 e757fca 9d8d919 e757fca 9d8d919 f6172d7 9d8d919 e757fca 9d8d919 f6172d7 9d8d919 e757fca f6172d7 e757fca f6172d7 9d8d919 e757fca 9d8d919 f6172d7 9d8d919 e757fca 9d8d919 e757fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# Importing Libraries
import os
import numpy as np
import cv2
import torch
from torch import nn
import timm
import pickle
from transformers import DistilBertModel, DistilBertConfig
from torch.utils.data import Dataset, DataLoader
from tqdm.autonotebook import tqdm
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Trained Model Configurations
CFG = {
"debug": False,
"captions_path": ".",
"batch_size": 64,
"num_workers": 4,
"head_lr": 1e-3,
"image_encoder_lr": 1e-4,
"text_encoder_lr": 1e-5,
"weight_decay": 1e-3,
"patience": 1,
"factor": 0.8,
"epochs": 12,
"device": "cpu",
"model_name": 'resnet50',
"image_embedding": 2048,
"text_encoder_model": "distilbert-base-uncased",
"text_embedding": 768,
"text_tokenizer": "distilbert-base-uncased",
"max_length": 200,
"pretrained": True,
"trainable": True,
"temperature": 1.0,
"size": 224,
"num_projection_layers": 1,
"projection_dim": 256,
"dropout": 0.1
}
# Loading Finetuned Clip Model to the below class format
class CLIPModel(nn.Module):
def __init__(
self,
temperature = CFG["temperature"],
image_embedding = CFG["image_embedding"],
text_embedding = CFG["text_embedding"],
):
super().__init__()
self.image_encoder = ImageEncoder()
self.text_encoder = TextEncoder()
self.image_projection = ProjectionHead(embedding_dim = image_embedding)
self.text_projection = ProjectionHead(embedding_dim = text_embedding)
self.temperature = temperature
# Image Encoder Class to extract features using finetuned clip's Resnet Image Encoder
class ImageEncoder(nn.Module):
def __init__(self, model_name = CFG["model_name"], pretrained = CFG["pretrained"], trainable = CFG["trainable"]):
super().__init__()
self.model = timm.create_model(model_name, pretrained, num_classes = 0, global_pool = "avg")
for p in self.model.parameters():
p.requires_grad = trainable
def forward(self, x):
return self.model(x)
# Text Encoder - Optional in inference
class TextEncoder(nn.Module):
def __init__(self, model_name = CFG["text_encoder_model"], pretrained = CFG["pretrained"], trainable = CFG["trainable"]):
super().__init__()
if pretrained:
self.model = DistilBertModel.from_pretrained(model_name)
else:
self.model = DistilBertModel(config = DistilBertConfig())
for p in self.model.parameters():
p.requires_grad = trainable
self.target_token_idx = 0
def forward(self, input_ids, attention_mask):
output = self.model(input_ids = input_ids, attention_mask = attention_mask)
last_hidden_state = output.last_hidden_state
return last_hidden_state[:, self.target_token_idx, :]
# Projection Class - Optional in inference
class ProjectionHead(nn.Module):
def __init__(
self,
embedding_dim,
projection_dim = CFG["projection_dim"],
dropout = CFG["dropout"]
):
super().__init__()
self.projection = nn.Linear(embedding_dim, projection_dim)
self.gelu = nn.GELU()
self.fc = nn.Linear(projection_dim, projection_dim)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(projection_dim)
def forward(self, x):
projected = self.projection(x)
x = self.gelu(projected)
x = self.fc(x)
x = self.dropout(x)
x = x + projected
x = self.layer_norm(x)
return x
# Class to transform image to custom data format
class SkyImage(Dataset):
def __init__(self, img, label):
self.img = img
self.img_label = label
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
image = cv2.resize(self.img[idx], (244, 244))
image = np.moveaxis(image, -1, 0)
label = self.img_label[idx]
return image, label
# Method to initialize CatBoost model
def initialize_models():
cbt_model = pickle.load(open("catboost_model.sav", 'rb'))
clip_model = CLIPModel().to(CFG["device"])
clip_model.load_state_dict(torch.load("clip_model.pt", map_location = CFG["device"]))
clip_model.eval()
return cbt_model, clip_model
# Method to extract features from finetuned clip model
def get_features(clip_model, dataset):
features, label, embeddings = [], [], []
with torch.no_grad():
for images, labels in tqdm(DataLoader(dataset, batch_size = 64)):
image_input = torch.tensor(np.stack(images)).cpu().float()
image_features = clip_model.image_encoder(image_input)
features.append(image_features)
label.append(labels)
return torch.cat(features), torch.cat(label).cpu()
# Method to calculate cloud coverage
def predict_cloud_coverage(image, clip_model, CTBR_model):
img, lbl = [image], [0]
# Transforming Data into custom format
test_image = SkyImage(img, lbl)
# Extracting Features from Finetuned CLIP model
features, label = get_features(clip_model, test_image)
# Predicting Cloud Coverage based on extracted features
pred_cloud_coverage = CTBR_model.predict(features.cpu().numpy())
return round(max(0.0, min(100.0, pred_cloud_coverage[0])), 1) |