File size: 32,376 Bytes
cf13b1c
 
 
 
dc9182d
cf13b1c
dc9182d
cf13b1c
dc9182d
 
b2e7248
cf13b1c
dc9182d
2117a04
0253f2a
cf13b1c
2117a04
b2e7248
53aa71f
b2e7248
53aa71f
 
b2adf82
dc9182d
 
 
 
 
 
 
 
 
2117a04
 
 
dc9182d
 
 
 
 
2117a04
dc9182d
 
 
2117a04
dc9182d
2117a04
dc9182d
2117a04
 
 
 
dc9182d
 
2117a04
 
 
dc9182d
 
0253f2a
dc9182d
 
2117a04
dc9182d
 
e6f4968
2117a04
 
 
e6f4968
 
 
2117a04
e6f4968
 
 
 
2117a04
 
e6f4968
284013e
dc9182d
2117a04
 
 
dc9182d
 
2117a04
dc9182d
 
 
2117a04
dc9182d
 
 
2117a04
 
 
 
 
 
8b177d4
b2e7248
 
 
 
 
c6f5a0b
b2e7248
 
c6f5a0b
 
 
b2e7248
c6f5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e7248
 
c6f5a0b
 
b2e7248
 
 
 
c6f5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e7248
c6f5a0b
b2e7248
c6f5a0b
 
 
b2e7248
c6f5a0b
 
 
 
 
 
 
 
 
 
b2e7248
c6f5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e7248
c6f5a0b
 
 
 
 
 
 
 
 
 
b2e7248
c6f5a0b
 
 
 
b2e7248
c6f5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e7248
c6f5a0b
 
 
 
b2e7248
 
c6f5a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0b613c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f79a5
 
b0b613c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3f79a5
 
b0b613c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
import os
import re
import random
import string
import uuid
import json
import logging
import asyncio
import time
from collections import defaultdict
from typing import List, Dict, Any, Optional, AsyncGenerator, Union

from datetime import datetime

from aiohttp import ClientSession, ClientTimeout, ClientError
from fastapi import FastAPI, HTTPException, Request, Depends, Header
from fastapi.responses import StreamingResponse, JSONResponse, RedirectResponse
from pydantic import BaseModel

from PIL import Image
import base64
from io import BytesIO

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Load environment variables
API_KEYS = os.getenv('API_KEYS', '').split(',')  # Comma-separated API keys
RATE_LIMIT = int(os.getenv('RATE_LIMIT', '60'))  # Requests per minute
AVAILABLE_MODELS = os.getenv('AVAILABLE_MODELS', '')  # Comma-separated available models

if not API_KEYS or API_KEYS == ['']:
    logger.error("No API keys found. Please set the API_KEYS environment variable.")
    raise Exception("API_KEYS environment variable not set.")

# Process available models
if AVAILABLE_MODELS:
    AVAILABLE_MODELS = [model.strip() for model in AVAILABLE_MODELS.split(',') if model.strip()]
else:
    AVAILABLE_MODELS = []  # If empty, all models are available

# Simple in-memory rate limiter based solely on IP addresses
rate_limit_store = defaultdict(lambda: {"count": 0, "timestamp": time.time()})

# Define cleanup interval and window
CLEANUP_INTERVAL = 60  # seconds
RATE_LIMIT_WINDOW = 60  # seconds

async def cleanup_rate_limit_stores():
    """
    Periodically cleans up stale entries in the rate_limit_store to prevent memory bloat.
    """
    while True:
        current_time = time.time()
        ips_to_delete = [ip for ip, value in rate_limit_store.items() if current_time - value["timestamp"] > RATE_LIMIT_WINDOW * 2]
        for ip in ips_to_delete:
            del rate_limit_store[ip]
            logger.debug(f"Cleaned up rate_limit_store for IP: {ip}")
        await asyncio.sleep(CLEANUP_INTERVAL)

async def rate_limiter_per_ip(request: Request):
    """
    Rate limiter that enforces a limit based on the client's IP address.
    """
    client_ip = request.client.host
    current_time = time.time()

    # Initialize or update the count and timestamp
    if current_time - rate_limit_store[client_ip]["timestamp"] > RATE_LIMIT_WINDOW:
        rate_limit_store[client_ip] = {"count": 1, "timestamp": current_time}
    else:
        if rate_limit_store[client_ip]["count"] >= RATE_LIMIT:
            logger.warning(f"Rate limit exceeded for IP address: {client_ip}")
            raise HTTPException(status_code=429, detail='Rate limit exceeded for IP address | NiansuhAI')
        rate_limit_store[client_ip]["count"] += 1

async def get_api_key(request: Request, authorization: str = Header(None)) -> str:
    """
    Dependency to extract and validate the API key from the Authorization header.
    """
    client_ip = request.client.host
    if authorization is None or not authorization.startswith('Bearer '):
        logger.warning(f"Invalid or missing authorization header from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid authorization header format')
    api_key = authorization[7:]
    if api_key not in API_KEYS:
        logger.warning(f"Invalid API key attempted: {api_key} from IP: {client_ip}")
        raise HTTPException(status_code=401, detail='Invalid API key')
    return api_key

# Custom exception for model not working
class ModelNotWorkingException(Exception):
    def __init__(self, model: str):
        self.model = model
        self.message = f"The model '{model}' is currently not working. Please try another model or wait for it to be fixed."
        super().__init__(self.message)

# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
    def __init__(self, url: str, alt: str):
        self.url = url
        self.alt = alt

def to_data_uri(image: Any) -> str:
    return "data:image/png;base64,..."  # Replace with actual base64 data

class Blackbox:
    url = "https://www.blackbox.ai"
    api_endpoint = "https://www.blackbox.ai/api/chat"
    working = True
    supports_stream = True
    supports_system_message = True
    supports_message_history = True

    default_model = 'blackboxai'
    image_models = ['ImageGeneration']
    models = [
        default_model,
        'blackboxai-pro',
        "llama-3.1-8b",
        'llama-3.1-70b',
        'llama-3.1-405b',
        'gpt-4o',
        'gemini-pro',
        'gemini-1.5-flash',
        'claude-sonnet-3.5',
        'PythonAgent',
        'JavaAgent',
        'JavaScriptAgent',
        'HTMLAgent',
        'GoogleCloudAgent',
        'AndroidDeveloper',
        'SwiftDeveloper',
        'Next.jsAgent',
        'MongoDBAgent',
        'PyTorchAgent',
        'ReactAgent',
        'XcodeAgent',
        'AngularJSAgent',
        *image_models,
        'Niansuh',
    ]

    # Filter models based on AVAILABLE_MODELS
    if AVAILABLE_MODELS:
        models = [model for model in models if model in AVAILABLE_MODELS]

    agentMode = {
        'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
        'Niansuh': {'mode': True, 'id': "NiansuhAIk1HgESy", 'name': "Niansuh"},
    }
    trendingAgentMode = {
        "blackboxai": {},
        "gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
        "llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
        'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
        'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
        'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
        'PythonAgent': {'mode': True, 'id': "Python Agent"},
        'JavaAgent': {'mode': True, 'id': "Java Agent"},
        'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
        'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
        'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
        'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
        'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
        'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
        'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
        'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
        'ReactAgent': {'mode': True, 'id': "React Agent"},
        'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
        'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
    }

    userSelectedModel = {
        "gpt-4o": "gpt-4o",
        "gemini-pro": "gemini-pro",
        'claude-sonnet-3.5': "claude-sonnet-3.5",
    }

    model_prefixes = {
        'gpt-4o': '@GPT-4o',
        'gemini-pro': '@Gemini-PRO',
        'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
        'PythonAgent': '@Python Agent',
        'JavaAgent': '@Java Agent',
        'JavaScriptAgent': '@JavaScript Agent',
        'HTMLAgent': '@HTML Agent',
        'GoogleCloudAgent': '@Google Cloud Agent',
        'AndroidDeveloper': '@Android Developer',
        'SwiftDeveloper': '@Swift Developer',
        'Next.jsAgent': '@Next.js Agent',
        'MongoDBAgent': '@MongoDB Agent',
        'PyTorchAgent': '@PyTorch Agent',
        'ReactAgent': '@React Agent',
        'XcodeAgent': '@Xcode Agent',
        'AngularJSAgent': '@AngularJS Agent',
        'blackboxai-pro': '@BLACKBOXAI-PRO',
        'ImageGeneration': '@Image Generation',
        'Niansuh': '@Niansuh',
    }

    model_referers = {
        "blackboxai": f"{url}/?model=blackboxai",
        "gpt-4o": f"{url}/?model=gpt-4o",
        "gemini-pro": f"{url}/?model=gemini-pro",
        "claude-sonnet-3.5": f"{url}/?model=claude-sonnet-3.5"
    }

    model_aliases = {
        "gemini-flash": "gemini-1.5-flash",
        "claude-3.5-sonnet": "claude-sonnet-3.5",
        "flux": "ImageGeneration",
        "niansuh": "Niansuh",
    }

    @classmethod
    def get_model(cls, model: str) -> Optional[str]:
        if model in cls.models:
            return model
        elif model in cls.userSelectedModel and cls.userSelectedModel[model] in cls.models:
            return cls.userSelectedModel[model]
        elif model in cls.model_aliases and cls.model_aliases[model] in cls.models:
            return cls.model_aliases[model]
        else:
            return cls.default_model if cls.default_model in cls.models else None

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: List[Dict[str, str]],
        proxy: Optional[str] = None,
        image: Any = None,
        image_name: Optional[str] = None,
        webSearchMode: bool = False,
        **kwargs
    ) -> AsyncGenerator[Any, None]:
        model = cls.get_model(model)
        if model is None:
            logger.error(f"Model {model} is not available.")
            raise ModelNotWorkingException(model)

        logger.info(f"Selected model: {model}")

        if not cls.working or model not in cls.models:
            logger.error(f"Model {model} is not working or not supported.")
            raise ModelNotWorkingException(model)
        
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9",
            "cache-control": "no-cache",
            "content-type": "application/json",
            "origin": cls.url,
            "pragma": "no-cache",
            "priority": "u=1, i",
            "referer": cls.model_referers.get(model, cls.url),
            "sec-ch-ua": '"Chromium";v="129", "Not=A?Brand";v="8"',
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-platform": '"Linux"',
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin",
            "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/129.0.0.0 Safari/537.36",
        }

        if model in cls.model_prefixes:
            prefix = cls.model_prefixes[model]
            if not messages[0]['content'].startswith(prefix):
                logger.debug(f"Adding prefix '{prefix}' to the first message.")
                messages[0]['content'] = f"{prefix} {messages[0]['content']}"
        
        random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
        messages[-1]['id'] = random_id
        messages[-1]['role'] = 'user'

        # Don't log the full message content for privacy
        logger.debug(f"Generated message ID: {random_id} for model: {model}")

        if image is not None:
            messages[-1]['data'] = {
                'fileText': '',
                'imageBase64': to_data_uri(image),
                'title': image_name
            }
            messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
            logger.debug("Image data added to the message.")
        
        data = {
            "messages": messages,
            "id": random_id,
            "previewToken": None,
            "userId": None,
            "codeModelMode": True,
            "agentMode": {},
            "trendingAgentMode": {},
            "isMicMode": False,
            "userSystemPrompt": None,
            "maxTokens": 99999999,
            "playgroundTopP": 0.9,
            "playgroundTemperature": 0.5,
            "isChromeExt": False,
            "githubToken": None,
            "clickedAnswer2": False,
            "clickedAnswer3": False,
            "clickedForceWebSearch": False,
            "visitFromDelta": False,
            "mobileClient": False,
            "userSelectedModel": None,
            "webSearchMode": webSearchMode,
        }

        if model in cls.agentMode:
            data["agentMode"] = cls.agentMode[model]
        elif model in cls.trendingAgentMode:
            data["trendingAgentMode"] = cls.trendingAgentMode[model]
        elif model in cls.userSelectedModel:
            data["userSelectedModel"] = cls.userSelectedModel[model]
        logger.info(f"Sending request to {cls.api_endpoint} with data (excluding messages).")

        timeout = ClientTimeout(total=60)  # Set an appropriate timeout
        retry_attempts = 10  # Set the number of retry attempts

        for attempt in range(retry_attempts):
            try:
                async with ClientSession(headers=headers, timeout=timeout) as session:
                    async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
                        response.raise_for_status()
                        logger.info(f"Received response with status {response.status}")
                        if model == 'ImageGeneration':
                            response_text = await response.text()
                            url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
                            if url_match:
                                image_url = url_match.group(0)
                                logger.info(f"Image URL found.")
                                yield ImageResponse(image_url, alt=messages[-1]['content'])
                            else:
                                logger.error("Image URL not found in the response.")
                                raise Exception("Image URL not found in the response")
                        else:
                            full_response = ""
                            search_results_json = ""
                            try:
                                async for chunk, _ in response.content.iter_chunks():
                                    if chunk:
                                        decoded_chunk = chunk.decode(errors='ignore')
                                        decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
                                        if decoded_chunk.strip():
                                            if '$~~~$' in decoded_chunk:
                                                search_results_json += decoded_chunk
                                            else:
                                                full_response += decoded_chunk
                                                yield decoded_chunk
                                logger.info("Finished streaming response chunks.")
                            except Exception as e:
                                logger.exception("Error while iterating over response chunks.")
                                raise e
                            if data["webSearchMode"] and search_results_json:
                                match = re.search(r'\$~~~\$(.*?)\$~~~\$', search_results_json, re.DOTALL)
                                if match:
                                    try:
                                        search_results = json.loads(match.group(1))
                                        formatted_results = "\n\n**Sources:**\n"
                                        for i, result in enumerate(search_results[:5], 1):
                                            formatted_results += f"{i}. [{result['title']}]({result['link']})\n"
                                        logger.info("Formatted search results.")
                                        yield formatted_results
                                    except json.JSONDecodeError as je:
                                        logger.error("Failed to parse search results JSON.")
                                        raise je
            except ClientError as ce:
                logger.error(f"Client error occurred: {ce}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=502, detail="Error communicating with the external API.")
            except asyncio.TimeoutError:
                logger.error(f"Request timed out. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=504, detail="External API request timed out.")
            except Exception as e:
                logger.error(f"Unexpected error: {e}. Retrying attempt {attempt + 1}/{retry_attempts}")
                if attempt == retry_attempts - 1:
                    raise HTTPException(status_code=500, detail=str(e))

# FastAPI app setup
app = FastAPI()

# Add the cleanup task when the app starts
@app.on_event("startup")
async def startup_event():
    asyncio.create_task(cleanup_rate_limit_stores())
    logger.info("Started rate limit store cleanup task.")

# Middleware to enhance security and enforce Content-Type for specific endpoints
@app.middleware("http")
async def security_middleware(request: Request, call_next):
    client_ip = request.client.host
    # Enforce that POST requests to /v1/chat/completions must have Content-Type: application/json
    if request.method == "POST" and request.url.path == "/v1/chat/completions":
        content_type = request.headers.get("Content-Type")
        if content_type != "application/json":
            logger.warning(f"Invalid Content-Type from IP: {client_ip} for path: {request.url.path}")
            return JSONResponse(
                status_code=400,
                content={
                    "error": {
                        "message": "Content-Type must be application/json",
                        "type": "invalid_request_error",
                        "param": None,
                        "code": None
                    }
                },
            )
    response = await call_next(request)
    return response

# Request Models
class Message(BaseModel):
    role: str
    content: Union[str, List[Any]]  # content can be a string or a list (for images)

class ChatRequest(BaseModel):
    model: str
    messages: List[Message]
    temperature: Optional[float] = 1.0
    top_p: Optional[float] = 1.0
    n: Optional[int] = 1
    stream: Optional[bool] = False
    stop: Optional[Union[str, List[str]]] = None
    max_tokens: Optional[int] = None
    presence_penalty: Optional[float] = 0.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    webSearchMode: Optional[bool] = False  # Custom parameter
    image: Optional[str] = None  # Base64-encoded image

class TokenizerRequest(BaseModel):
    text: str

def calculate_estimated_cost(prompt_tokens: int, completion_tokens: int) -> float:
    """
    Calculate the estimated cost based on the number of tokens.
    Replace the pricing below with your actual pricing model.
    """
    # Example pricing: $0.00000268 per token
    cost_per_token = 0.00000268
    return round((prompt_tokens + completion_tokens) * cost_per_token, 8)

def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion",
        "created": int(datetime.now().timestamp()),
        "model": model,
        "choices": [
            {
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": content
                },
                "finish_reason": finish_reason
            }
        ],
        "usage": None,  # To be filled in non-streaming responses
    }

@app.post("/v1/chat/completions", dependencies=[Depends(rate_limiter_per_ip)])
async def chat_completions(request: ChatRequest, req: Request, api_key: str = Depends(get_api_key)):
    client_ip = req.client.host
    # Redact user messages only for logging purposes
    redacted_messages = [{"role": msg.role, "content": "[redacted]"} for msg in request.messages]

    logger.info(f"Received chat completions request from API key: {api_key} | IP: {client_ip} | Model: {request.model} | Messages: {redacted_messages}")

    analysis_result = None
    if request.image:
        try:
            image = decode_base64_image(request.image)
            analysis_result = analyze_image(image)
            logger.info("Image analysis completed successfully.")
        except HTTPException as he:
            logger.error(f"Image analysis failed: {he.detail}")
            raise he
        except Exception as e:
            logger.exception("Unexpected error during image analysis.")
            raise HTTPException(status_code=500, detail="Image analysis failed.") from e

    # Prepare messages to send to the external API, excluding image data
    processed_messages = []
    for msg in request.messages:
        if isinstance(msg.content, list) and len(msg.content) == 2:
            # Assume the second item is image data, skip it
            processed_messages.append({
                "role": msg.role,
                "content": msg.content[0]["text"]  # Only include the text part
            })
        else:
            processed_messages.append({
                "role": msg.role,
                "content": msg.content
            })

    # Create a modified ChatRequest without the image
    modified_request = ChatRequest(
        model=request.model,
        messages=[msg for msg in processed_messages],
        stream=request.stream,
        temperature=request.temperature,
        top_p=request.top_p,
        max_tokens=request.max_tokens,
        presence_penalty=request.presence_penalty,
        frequency_penalty=request.frequency_penalty,
        logit_bias=request.logit_bias,
        user=request.user,
        webSearchMode=request.webSearchMode,
        image=None  # Exclude image from external API
    )

    try:
        if request.stream:
            logger.info("Streaming response")
            # **Removed the 'await' keyword here**
            streaming_response = Blackbox.create_async_generator(
                model=modified_request.model,
                messages=[{"role": msg.role, "content": msg.content} for msg in modified_request.messages],
                proxy=None,
                image=None,
                image_name=None,
                webSearchMode=modified_request.webSearchMode
            )

            # Wrap the streaming generator to include image analysis at the end
            async def generate_with_analysis():
                assistant_content = ""
                try:
                    async for chunk in streaming_response:
                        if isinstance(chunk, ImageResponse):
                            # Handle image responses if necessary
                            image_markdown = f"![image]({chunk.url})\n"
                            assistant_content += image_markdown
                            response_chunk = create_response(image_markdown, modified_request.model, finish_reason=None)
                        else:
                            assistant_content += chunk
                            # Yield the chunk as a partial choice
                            response_chunk = {
                                "id": f"chatcmpl-{uuid.uuid4()}",
                                "object": "chat.completion.chunk",
                                "created": int(datetime.now().timestamp()),
                                "model": modified_request.model,
                                "choices": [
                                    {
                                        "index": 0,
                                        "delta": {"content": chunk, "role": "assistant"},
                                        "finish_reason": None,
                                    }
                                ],
                                "usage": None,  # Usage can be updated if you track tokens in real-time
                            }
                        yield f"data: {json.dumps(response_chunk)}\n\n"
                    
                    # After all chunks are sent, send the final message with finish_reason
                    prompt_tokens = sum(len(msg["content"].split()) for msg in modified_request.messages)
                    completion_tokens = len(assistant_content.split())
                    total_tokens = prompt_tokens + completion_tokens
                    estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)

                    final_content = assistant_content
                    if analysis_result:
                        final_content += f"\n\n**Image Analysis:** {analysis_result}"

                    final_response = {
                        "id": f"chatcmpl-{uuid.uuid4()}",
                        "object": "chat.completion",
                        "created": int(datetime.now().timestamp()),
                        "model": modified_request.model,
                        "choices": [
                            {
                                "message": {
                                    "role": "assistant",
                                    "content": final_content
                                },
                                "finish_reason": "stop",
                                "index": 0
                            }
                        ],
                        "usage": {
                            "prompt_tokens": prompt_tokens,
                            "completion_tokens": completion_tokens,
                            "total_tokens": total_tokens,
                            "estimated_cost": estimated_cost
                        },
                    }

                    yield f"data: {json.dumps(final_response)}\n\n"
                    yield "data: [DONE]\n\n"
                except HTTPException as he:
                    error_response = {"error": he.detail}
                    yield f"data: {json.dumps(error_response)}\n\n"
                except Exception as e:
                    logger.exception(f"Error during streaming response generation from IP: {client_ip}.")
                    error_response = {"error": str(e)}
                    yield f"data: {json.dumps(error_response)}\n\n"

            return StreamingResponse(generate_with_analysis(), media_type="text/event-stream")
        else:
            logger.info("Non-streaming response")
            # **Removed the 'await' keyword here as well**
            streaming_response = Blackbox.create_async_generator(
                model=modified_request.model,
                messages=[{"role": msg.role, "content": msg.content} for msg in modified_request.messages],
                proxy=None,
                image=None,
                image_name=None,
                webSearchMode=modified_request.webSearchMode
            )

            response_content = ""
            async for chunk in streaming_response:
                if isinstance(chunk, ImageResponse):
                    response_content += f"![image]({chunk.url})\n"
                else:
                    response_content += chunk

            prompt_tokens = sum(len(msg["content"].split()) for msg in modified_request.messages)
            completion_tokens = len(response_content.split())
            total_tokens = prompt_tokens + completion_tokens
            estimated_cost = calculate_estimated_cost(prompt_tokens, completion_tokens)

            if analysis_result:
                response_content += f"\n\n**Image Analysis:** {analysis_result}"

            logger.info(f"Completed non-streaming response generation for API key: {api_key} | IP: {client_ip}")

            response = {
                "id": f"chatcmpl-{uuid.uuid4()}",
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": modified_request.model,
                "choices": [
                    {
                        "message": {
                            "role": "assistant",
                            "content": response_content
                        },
                        "finish_reason": "stop",
                        "index": 0
                    }
                ],
                "usage": {
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens,
                    "total_tokens": total_tokens,
                    "estimated_cost": estimated_cost
                },
            }

            return response
    except ModelNotWorkingException as e:
        logger.warning(f"Model not working: {e} | IP: {client_ip}")
        raise HTTPException(status_code=503, detail=str(e))
    except HTTPException as he:
        logger.warning(f"HTTPException: {he.detail} | IP: {client_ip}")
        raise he
    except Exception as e:
        logger.exception(f"An unexpected error occurred while processing the chat completions request from IP: {client_ip}.")
        raise HTTPException(status_code=500, detail=str(e))

# Endpoint: POST /v1/tokenizer
@app.post("/v1/tokenizer", dependencies=[Depends(rate_limiter_per_ip)])
async def tokenizer(request: TokenizerRequest, req: Request):
    client_ip = req.client.host
    text = request.text
    token_count = len(text.split())
    logger.info(f"Tokenizer requested from IP: {client_ip} | Text length: {len(text)}")
    return {"text": text, "tokens": token_count}

# Endpoint: GET /v1/models
@app.get("/v1/models", dependencies=[Depends(rate_limiter_per_ip)])
async def get_models(req: Request):
    client_ip = req.client.host
    logger.info(f"Fetching available models from IP: {client_ip}")
    return {"data": [{"id": model, "object": "model"} for model in Blackbox.models]}

# Endpoint: GET /v1/models/{model}/status
@app.get("/v1/models/{model}/status", dependencies=[Depends(rate_limiter_per_ip)])
async def model_status(model: str, req: Request):
    client_ip = req.client.host
    logger.info(f"Model status requested for '{model}' from IP: {client_ip}")
    if model in Blackbox.models:
        return {"model": model, "status": "available"}
    elif model in Blackbox.model_aliases and Blackbox.model_aliases[model] in Blackbox.models:
        actual_model = Blackbox.model_aliases[model]
        return {"model": actual_model, "status": "available via alias"}
    else:
        logger.warning(f"Model not found: {model} from IP: {client_ip}")
        raise HTTPException(status_code=404, detail="Model not found")

# Endpoint: GET /v1/health
@app.get("/v1/health", dependencies=[Depends(rate_limiter_per_ip)])
async def health_check(req: Request):
    client_ip = req.client.host
    logger.info(f"Health check requested from IP: {client_ip}")
    return {"status": "ok"}

# Endpoint: GET /v1/chat/completions (GET method)
@app.get("/v1/chat/completions")
async def chat_completions_get(req: Request):
    client_ip = req.client.host
    logger.info(f"GET request made to /v1/chat/completions from IP: {client_ip}, redirecting to 'about:blank'")
    return RedirectResponse(url='about:blank')

# Custom exception handler to match OpenAI's error format
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
    client_ip = request.client.host
    logger.error(f"HTTPException: {exc.detail} | Path: {request.url.path} | IP: {client_ip}")
    return JSONResponse(
        status_code=exc.status_code,
        content={
            "error": {
                "message": exc.detail,
                "type": "invalid_request_error",
                "param": None,
                "code": None
            }
        },
    )

# Image Processing Utilities
def decode_base64_image(base64_str: str) -> Image.Image:
    try:
        image_data = base64.b64decode(base64_str)
        image = Image.open(BytesIO(image_data))
        return image
    except Exception as e:
        logger.error("Failed to decode base64 image.")
        raise HTTPException(status_code=400, detail="Invalid base64 image data.") from e

def analyze_image(image: Image.Image) -> str:
    """
    Placeholder for image analysis.
    Replace this with actual image analysis logic.
    """
    # Example: Return image size as analysis
    width, height = image.size
    return f"Image analyzed successfully. Width: {width}px, Height: {height}px."

# Run the application
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)