File size: 2,613 Bytes
6becda8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import gradio as gr
from pydub import AudioSegment
import pyaudioconvert as pac
import torch
import torchaudio
import sox
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor,Wav2Vec2ProcessorWithLM


def convert (audio):
  file_name = audio
  if file_name.endswith("mp3") or file_name.endswith("wav") or file_name.endswith("ogg"):
    if file_name.endswith("mp3"):
      sound = AudioSegment.from_mp3(file_name)
      sound.export(audio, format="wav")
    elif file_name.endswith("ogg"):
      sound = AudioSegment.from_ogg(audio)
      sound.export(audio, format="wav")
  else:
    return False
  pac.convert_wav_to_16bit_mono(audio,audio)
  return True


def parse_transcription_with_lm(logits):
    result = processor_with_LM.batch_decode(logits.cpu().numpy())
    text = result.text
    transcription = text[0].replace('<s>','')
    return transcription

def parse_transcription(logits):
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
    return transcription

def transcribe(audio, audio_microphone, applyLM):
    audio_path = audio_microphone if audio_microphone else audio
    speech_array, sampling_rate = torchaudio.load(audio_path)
    speech = torchaudio.functional.resample(speech_array, orig_freq=sampling_rate, new_freq=16000).squeeze().numpy()
    """
    if convert(audio_path)== False:
        return "The format must be mp3,wav and ogg"
    speech, sample_rate = torchaudio.load(audio_path)
    """
    
    inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values).logits

    if applyLM:
        return parse_transcription_with_lm(logits)
    else:
        return parse_transcription(logits)

auth_token = os.environ.get("key") or True
model_id = "mutisya/wav2vec2-300m-kik-t22-1k-ft-withLM"
processor = Wav2Vec2Processor.from_pretrained(model_id, use_auth_token=auth_token)
processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained(model_id, use_auth_token=auth_token)
model = Wav2Vec2ForCTC.from_pretrained(model_id, use_auth_token=auth_token)


gradio_ui = gr.Interface(
    fn=transcribe,
    title="Kikuyu Speech Recognition",
    description="",
    inputs=[gr.Audio(label="Upload Audio File", type="filepath", optional=True), 
            gr.Audio(source="microphone", type="filepath", optional=True, label="Record from microphone"),
            gr.Checkbox(label="Apply LM", value=False)],
    outputs=[gr.outputs.Textbox(label="Recognized speech")]
)
gradio_ui.launch(enable_queue=True)