File size: 1,371 Bytes
6b48acb
 
7ee4d2f
8a42dc8
 
 
 
 
 
 
 
 
 
 
 
 
5a8cf0f
 
 
 
 
 
 
7ee4d2f
 
 
a598e29
7ee4d2f
 
2d6c2c5
 
 
 
 
 
e5abde8
 
 
8a94dc4
e5abde8
 
 
 
8a42dc8
 
 
 
 
 
 
c3245e0
3531a7c
85378c5
 
8a42dc8
 
a598e29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr

title = "Mushroom Gallery"

tts_examples = [
    "I love learning machine learning",
    "How do you do?",
]

tts_demo = gr.Interface.load(
    "huggingface/facebook/fastspeech2-en-ljspeech",
    title=None,
    examples=tts_examples,
    description="Give me something to say!",
)

anime_demo = gr.Interface.load(
    "spaces/akhaliq/AnimeGANv2",
    title=None,
    description="Anime GAN",
)


vision_demo = gr.Interface.load(
    "models/google/vit-base-patch16-224",
    title=None,
    description="Vision Transformer",
)

chatgpt3_demo = gr.Interface.load(
    "spaces/mushroomsolutions/chatgpt-3",
    title=None,
    description="Chat GPT3",
)

sentiment_demo = gr.Interface.load(
    "models/LiYuan/amazon-review-sentiment-analysis",
    title=None,
    description="Amazon Reviews",
)



stt_demo = gr.Interface.load(
    "huggingface/facebook/wav2vec2-base-960h",
    title=None,
    inputs="mic",
    description="Let me try to guess what you're saying!",
)

with gr.Blocks() as demo:
    gr.Markdown("<h2>Welcome to Mushrooom Solutions - AI ML Showcase</h2>")
    gr.TabbedInterface([vision_demo, sentiment_demo, anime_demo, chatgpt3_demo, tts_demo, stt_demo], 
                       ["Image Classification", "Sentiment Analysis", "Anime", "Chat GPT3", "Text-to-speech", "Speech-to-text"])

if __name__ == "__main__":
    demo.launch()