File size: 6,939 Bytes
9b6b78e d9b1305 9b6b78e d7d24e9 9b6b78e 27648a2 9b6b78e 29b4150 9b6b78e 452f87d 9b6b78e b04706d d9b1305 9b6b78e 1fa0c6b 9b6b78e 69d5ab5 d9b1305 69d5ab5 d9b1305 9b6b78e d9b1305 b5e043c 9b6b78e 97e2c82 d9b1305 9b6b78e 0f37f95 9b6b78e 452f87d 9b6b78e d9b1305 97e2c82 d9b1305 97e2c82 d9b1305 9b6b78e ad3f3da d9b1305 9b6b78e 6e4a082 9b6b78e af29733 518cd76 9b6b78e 518cd76 e9c77aa 44850e7 e9c77aa 9b6b78e 97e2c82 9b6b78e 89ce1c2 9b6b78e ad3f3da 9b6b78e 97e2c82 9b6b78e 97e2c82 9b6b78e 53c59c7 97e2c82 53c59c7 97e2c82 53c59c7 97e2c82 9b6b78e 4d9a4f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import random
import uuid
from urllib.parse import quote
from requests import get
from bs4 import BeautifulSoup
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import DiffusionPipeline
DESCRIPTION = """Hepzeka.com Görsel Oluşturma Aracı"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
NUM_IMAGES_PER_PROMPT = 1
valid_languages = {'tr', 'fr', 'esp', 'en'}
if torch.cuda.is_available():
pipe = DiffusionPipeline.from_pretrained(
"playgroundai/playground-v2.5-1024px-aesthetic",
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False,
variant="fp16"
)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
print("Loaded on Device!")
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("Model Compiled!")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def translate_to_english(phrase, src_lang):
if src_lang == 'en':
return phrase
dest_lang = 'en'
encoded_phrase = quote(phrase)
url = f"https://translate.glosbe.com/{src_lang}-{dest_lang}/{encoded_phrase}"
response = get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
translation_div = soup.find('div', class_='w-full h-full bg-gray-100 h-full border p-2 min-h-25vh sm:min-h-50vh whitespace-pre-wrap break-words')
translation = translation_div.text if translation_div else "Translation not found"
return translation
else:
return "Error: Unable to translate"
@spaces.GPU(enable_queue=True)
def generate(
phrase: str,
input_lang: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
pipe.to(device)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
if input_lang != 'en':
prompt = translate_to_english(phrase, input_lang)
else:
prompt = phrase
if not use_negative_prompt:
negative_prompt = None # type: ignore
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=25,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
use_resolution_binning=use_resolution_binning,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
["nyɔnu e nɔ sa tomati ɖo aximɛ", "fon"],
["ọba ilẹ̀ benin kan", "yo"],
["an astronaut riding a horse in space", "en"],
["a cartoon of a boy playing with a tiger", "en"],
["a cute robot artist painting on an easel, concept art", "en"],
["a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone", "en"]
]
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
input_lang = gr.Dropdown(choices=list(valid_languages), value='en', label='Input Language')
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20,
step=0.1,
value=3.0,
)
gr.Examples(
examples=examples,
inputs=[prompt, input_lang],
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
input_lang,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |