File size: 64,089 Bytes
c9e768e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b68830
c9e768e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b68830
c9e768e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
<!DOCTYPE html>
<html lang="en"><head>
<script src="accelerate_files/libs/clipboard/clipboard.min.js"></script>
<script src="accelerate_files/libs/quarto-html/tabby.min.js"></script>
<script src="accelerate_files/libs/quarto-html/popper.min.js"></script>
<script src="accelerate_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="accelerate_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="accelerate_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="accelerate_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="accelerate_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="accelerate_files/libs/quarto-contrib/videojs/video.min.js"></script>
<link href="accelerate_files/libs/quarto-contrib/videojs/video-js.css" rel="stylesheet"><meta charset="utf-8">
  <meta name="generator" content="quarto-1.3.450">

  <title>Hugging Face Accelerate: Making device-agnostic ML training and inference easy at scale</title>
  <meta name="apple-mobile-web-app-capable" content="yes">
  <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
  <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
  <link rel="stylesheet" href="accelerate_files/libs/revealjs/dist/reset.css">
  <link rel="stylesheet" href="accelerate_files/libs/revealjs/dist/reveal.css">
  <style>
    code{white-space: pre-wrap;}
    span.smallcaps{font-variant: small-caps;}
    div.columns{display: flex; gap: min(4vw, 1.5em);}
    div.column{flex: auto; overflow-x: auto;}
    div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
    ul.task-list{list-style: none;}
    ul.task-list li input[type="checkbox"] {
      width: 0.8em;
      margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
      vertical-align: middle;
    }
    /* CSS for syntax highlighting */
    pre > code.sourceCode { white-space: pre; position: relative; }
    pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
    pre > code.sourceCode > span:empty { height: 1.2em; }
    .sourceCode { overflow: visible; }
    code.sourceCode > span { color: inherit; text-decoration: inherit; }
    div.sourceCode { margin: 1em 0; }
    pre.sourceCode { margin: 0; }
    @media screen {
    div.sourceCode { overflow: auto; }
    }
    @media print {
    pre > code.sourceCode { white-space: pre-wrap; }
    pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
    }
    pre.numberSource code
      { counter-reset: source-line 0; }
    pre.numberSource code > span
      { position: relative; left: -4em; counter-increment: source-line; }
    pre.numberSource code > span > a:first-child::before
      { content: counter(source-line);
        position: relative; left: -1em; text-align: right; vertical-align: baseline;
        border: none; display: inline-block;
        -webkit-touch-callout: none; -webkit-user-select: none;
        -khtml-user-select: none; -moz-user-select: none;
        -ms-user-select: none; user-select: none;
        padding: 0 4px; width: 4em;
      }
    pre.numberSource { margin-left: 3em;  padding-left: 4px; }
    div.sourceCode
      { color: #f8f8f2;  }
    @media screen {
    pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
    }
    code span { color: #f8f8f2; } /* Normal */
    code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } /* Alert */
    code span.an { color: #d4d0ab; } /* Annotation */
    code span.at { color: #00e0e0; } /* Attribute */
    code span.bn { color: #d4d0ab; } /* BaseN */
    code span.bu { color: #abe338; } /* BuiltIn */
    code span.cf { color: #ffa07a; font-weight: bold; } /* ControlFlow */
    code span.ch { color: #abe338; } /* Char */
    code span.cn { color: #ffd700; } /* Constant */
    code span.co { color: #f8f8f2; font-style: italic; } /* Comment */
    code span.cv { color: #ffd700; } /* CommentVar */
    code span.do { color: #f8f8f2; } /* Documentation */
    code span.dt { color: #ffa07a; } /* DataType */
    code span.dv { color: #d4d0ab; } /* DecVal */
    code span.er { color: #f07178; text-decoration: underline; } /* Error */
    code span.ex { color: #00e0e0; font-weight: bold; } /* Extension */
    code span.fl { color: #d4d0ab; } /* Float */
    code span.fu { color: #ffa07a; } /* Function */
    code span.im { color: #abe338; } /* Import */
    code span.in { color: #d4d0ab; } /* Information */
    code span.kw { color: #ffa07a; font-weight: bold; } /* Keyword */
    code span.op { color: #ffa07a; } /* Operator */
    code span.ot { color: #00e0e0; } /* Other */
    code span.pp { color: #dcc6e0; } /* Preprocessor */
    code span.re { color: #00e0e0; background-color: #f8f8f2; } /* RegionMarker */
    code span.sc { color: #abe338; } /* SpecialChar */
    code span.ss { color: #abe338; } /* SpecialString */
    code span.st { color: #abe338; } /* String */
    code span.va { color: #00e0e0; } /* Variable */
    code span.vs { color: #abe338; } /* VerbatimString */
    code span.wa { color: #dcc6e0; } /* Warning */
  </style>
  <link rel="stylesheet" href="accelerate_files/libs/revealjs/dist/theme/quarto.css">
  <link href="accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
  <link href="accelerate_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
  <link href="accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
  <link href="accelerate_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
  <style type="text/css">

  .callout {
    margin-top: 1em;
    margin-bottom: 1em;  
    border-radius: .25rem;
  }

  .callout.callout-style-simple { 
    padding: 0em 0.5em;
    border-left: solid #acacac .3rem;
    border-right: solid 1px silver;
    border-top: solid 1px silver;
    border-bottom: solid 1px silver;
    display: flex;
  }

  .callout.callout-style-default {
    border-left: solid #acacac .3rem;
    border-right: solid 1px silver;
    border-top: solid 1px silver;
    border-bottom: solid 1px silver;
  }

  .callout .callout-body-container {
    flex-grow: 1;
  }

  .callout.callout-style-simple .callout-body {
    font-size: 1rem;
    font-weight: 400;
  }

  .callout.callout-style-default .callout-body {
    font-size: 0.9rem;
    font-weight: 400;
  }

  .callout.callout-titled.callout-style-simple .callout-body {
    margin-top: 0.2em;
  }

  .callout:not(.callout-titled) .callout-body {
      display: flex;
  }

  .callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
    padding-left: 1.6em;
  }

  .callout.callout-titled .callout-header {
    padding-top: 0.2em;
    margin-bottom: -0.2em;
  }

  .callout.callout-titled .callout-title  p {
    margin-top: 0.5em;
    margin-bottom: 0.5em;
  }
    
  .callout.callout-titled.callout-style-simple .callout-content  p {
    margin-top: 0;
  }

  .callout.callout-titled.callout-style-default .callout-content  p {
    margin-top: 0.7em;
  }

  .callout.callout-style-simple div.callout-title {
    border-bottom: none;
    font-size: .9rem;
    font-weight: 600;
    opacity: 75%;
  }

  .callout.callout-style-default  div.callout-title {
    border-bottom: none;
    font-weight: 600;
    opacity: 85%;
    font-size: 0.9rem;
    padding-left: 0.5em;
    padding-right: 0.5em;
  }

  .callout.callout-style-default div.callout-content {
    padding-left: 0.5em;
    padding-right: 0.5em;
  }

  .callout.callout-style-simple .callout-icon::before {
    height: 1rem;
    width: 1rem;
    display: inline-block;
    content: "";
    background-repeat: no-repeat;
    background-size: 1rem 1rem;
  }

  .callout.callout-style-default .callout-icon::before {
    height: 0.9rem;
    width: 0.9rem;
    display: inline-block;
    content: "";
    background-repeat: no-repeat;
    background-size: 0.9rem 0.9rem;
  }

  .callout-title {
    display: flex
  }
    
  .callout-icon::before {
    margin-top: 1rem;
    padding-right: .5rem;
  }

  .callout.no-icon::before {
    display: none !important;
  }

  .callout.callout-titled .callout-body > .callout-content > :last-child {
    margin-bottom: 0.5rem;
  }

  .callout.callout-titled .callout-icon::before {
    margin-top: .5rem;
    padding-right: .5rem;
  }

  .callout:not(.callout-titled) .callout-icon::before {
    margin-top: 1rem;
    padding-right: .5rem;
  }

  /* Callout Types */

  div.callout-note {
    border-left-color: #4582ec !important;
  }

  div.callout-note .callout-icon::before {
    background-image: url('');
  }

  div.callout-note.callout-style-default .callout-title {
    background-color: #dae6fb
  }

  div.callout-important {
    border-left-color: #d9534f !important;
  }

  div.callout-important .callout-icon::before {
    background-image: url('');
  }

  div.callout-important.callout-style-default .callout-title {
    background-color: #f7dddc
  }

  div.callout-warning {
    border-left-color: #f0ad4e !important;
  }

  div.callout-warning .callout-icon::before {
    background-image: url('');
  }

  div.callout-warning.callout-style-default .callout-title {
    background-color: #fcefdc
  }

  div.callout-tip {
    border-left-color: #02b875 !important;
  }

  div.callout-tip .callout-icon::before {
    background-image: url('');
  }

  div.callout-tip.callout-style-default .callout-title {
    background-color: #ccf1e3
  }

  div.callout-caution {
    border-left-color: #fd7e14 !important;
  }

  div.callout-caution .callout-icon::before {
    background-image: url('');
  }

  div.callout-caution.callout-style-default .callout-title {
    background-color: #ffe5d0
  }

  </style>
  <style type="text/css">
    .reveal div.sourceCode {
      margin: 0;
      overflow: auto;
    }
    .reveal div.hanging-indent {
      margin-left: 1em;
      text-indent: -1em;
    }
    .reveal .slide:not(.center) {
      height: 100%;
    }
    .reveal .slide.scrollable {
      overflow-y: auto;
    }
    .reveal .footnotes {
      height: 100%;
      overflow-y: auto;
    }
    .reveal .slide .absolute {
      position: absolute;
      display: block;
    }
    .reveal .footnotes ol {
      counter-reset: ol;
      list-style-type: none; 
      margin-left: 0;
    }
    .reveal .footnotes ol li:before {
      counter-increment: ol;
      content: counter(ol) ". "; 
    }
    .reveal .footnotes ol li > p:first-child {
      display: inline-block;
    }
    .reveal .slide ul,
    .reveal .slide ol {
      margin-bottom: 0.5em;
    }
    .reveal .slide ul li,
    .reveal .slide ol li {
      margin-top: 0.4em;
      margin-bottom: 0.2em;
    }
    .reveal .slide ul[role="tablist"] li {
      margin-bottom: 0;
    }
    .reveal .slide ul li > *:first-child,
    .reveal .slide ol li > *:first-child {
      margin-block-start: 0;
    }
    .reveal .slide ul li > *:last-child,
    .reveal .slide ol li > *:last-child {
      margin-block-end: 0;
    }
    .reveal .slide .columns:nth-child(3) {
      margin-block-start: 0.8em;
    }
    .reveal blockquote {
      box-shadow: none;
    }
    .reveal .tippy-content>* {
      margin-top: 0.2em;
      margin-bottom: 0.7em;
    }
    .reveal .tippy-content>*:last-child {
      margin-bottom: 0.2em;
    }
    .reveal .slide > img.stretch.quarto-figure-center,
    .reveal .slide > img.r-stretch.quarto-figure-center {
      display: block;
      margin-left: auto;
      margin-right: auto; 
    }
    .reveal .slide > img.stretch.quarto-figure-left,
    .reveal .slide > img.r-stretch.quarto-figure-left  {
      display: block;
      margin-left: 0;
      margin-right: auto; 
    }
    .reveal .slide > img.stretch.quarto-figure-right,
    .reveal .slide > img.r-stretch.quarto-figure-right  {
      display: block;
      margin-left: auto;
      margin-right: 0; 
    }
  </style>
</head>
<body class="quarto-dark">
  <div class="reveal">
    <div class="slides">

<section id="title-slide" class="quarto-title-block center">
  <h1 class="title">Hugging Face Accelerate: Making device-agnostic ML training and inference easy at scale</h1>

<div class="quarto-title-authors">
</div>

</section>
<section id="who-am-i" class="slide level2">
<h2>Who am I?</h2>
<ul>
<li>Zachary Mueller</li>
<li>Technical Lead for the 🤗 Accelerate project</li>
<li>Maintain the <code>transformers</code> Trainer</li>
<li>API design geek</li>
</ul>
</section>
<section id="what-is-accelerate" class="slide level2">
<h2>What is 🤗 Accelerate?</h2>
<ul>
<li>A training framework</li>
<li>An inference framework</li>
<li>A command-line interface</li>
</ul>
</section>
<section id="a-training-framework" class="slide level2">
<h2>A Training Framework</h2>
<ul>
<li>Powered by PyTorch</li>
<li>Change a few lines of code, gain device <em>and</em> hardware-agnostic capabilities</li>
<li>Low-code, with minimal magic aimed at easy hackability and use without high-level abstractions</li>
<li>We handle the intracies so you don’t have to</li>
</ul>
</section>
<section id="a-training-framework-1" class="slide level2">
<h2>A Training Framework</h2>
<div style="font-size: 70%;">
<ul>
<li>Support for any hardware-accelerator on the market:
<ul>
<li>CPU, GPU, TPU, XPU, NPU, MLU</li>
</ul></li>
<li>Automatic mixed-precision training <em>safely</em> in whatever fashion you may choose:
<ul>
<li>FP16, BF16, FP8 (through either <code>TransformerEngine</code> or <code>MS-AMP</code>)</li>
</ul></li>
<li>Automatic and efficient gradient accumulation</li>
<li>Support for quantization through <code>bitsandbytes</code></li>
<li>Support your favorite experiment trackers (<code>aim</code>, <code>clearml</code>, <code>comet_ml</code>, <code>dvc-lite</code>, <code>ml-flow</code>, <code>tensorboard</code>, <code>wandb</code>)</li>
<li>Easy to configure plugin or YAML-level API for setting up advanced frameworks like <code>FSDP</code>, <code>DeepSpeed</code>, and <code>Megatron-LM</code></li>
</ul>
</div>
</section>
<section id="low-code" class="slide level2">
<h2>Low-Code</h2>
<div style="font-size: 70%;">
<ul>
<li>Biggest friction with “wrapper” libraries is control of your code</li>
<li>By being minimally intrusive, your code just “works” while still giving you complete control</li>
</ul>
</div>
<div style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%">
<div class="sourceCode" id="cb1"><pre class="sourceCode numberSource diff number-lines code-with-copy"><code class="sourceCode diff"><span id="cb1-1"><a href="#cb1-1"></a>  import torch</span>
<span id="cb1-2"><a href="#cb1-2"></a>  import torch.nn.functional as F</span>
<span id="cb1-3"><a href="#cb1-3"></a>  from datasets import load_dataset</span>
<span id="cb1-4"><a href="#cb1-4"></a><span class="va">+ from accelerate import Accelerator</span></span>
<span id="cb1-5"><a href="#cb1-5"></a></span>
<span id="cb1-6"><a href="#cb1-6"></a><span class="va">+ accelerator = Accelerator()</span></span>
<span id="cb1-7"><a href="#cb1-7"></a><span class="st">- device = 'cpu'</span></span>
<span id="cb1-8"><a href="#cb1-8"></a><span class="va">+ device = accelerator.device</span></span>
<span id="cb1-9"><a href="#cb1-9"></a></span>
<span id="cb1-10"><a href="#cb1-10"></a>  model = torch.nn.Transformer().to(device)</span>
<span id="cb1-11"><a href="#cb1-11"></a>  optimizer = torch.optim.Adam(model.parameters())</span>
<span id="cb1-12"><a href="#cb1-12"></a>  dataset = load_dataset('my_dataset')</span>
<span id="cb1-13"><a href="#cb1-13"></a>  data = torch.utils.data.DataLoader(dataset, shuffle=True)</span>
<span id="cb1-14"><a href="#cb1-14"></a></span>
<span id="cb1-15"><a href="#cb1-15"></a><span class="va">+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)</span></span>
<span id="cb1-16"><a href="#cb1-16"></a></span>
<span id="cb1-17"><a href="#cb1-17"></a>  model.train()</span>
<span id="cb1-18"><a href="#cb1-18"></a>  for epoch in range(10):</span>
<span id="cb1-19"><a href="#cb1-19"></a>      for source, targets in dataloader:</span>
<span id="cb1-20"><a href="#cb1-20"></a>          source, targets = source.to(device), targets.to(device)</span>
<span id="cb1-21"><a href="#cb1-21"></a>          optimizer.zero_grad()</span>
<span id="cb1-22"><a href="#cb1-22"></a>          output = model(source)</span>
<span id="cb1-23"><a href="#cb1-23"></a>          loss = F.cross_entropy(output, targets)</span>
<span id="cb1-24"><a href="#cb1-24"></a><span class="st">-         loss.backward()</span></span>
<span id="cb1-25"><a href="#cb1-25"></a><span class="va">+         accelerator.backward(loss)</span></span>
<span id="cb1-26"><a href="#cb1-26"></a>          optimizer.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="easy-to-integrate" class="slide level2">
<h2>Easy to integrate</h2>
<div style="font-size: 70%;">
<ul>
<li>Due to the low-code nature, it’s trivial to integrate into existing PyTorch frameworks:
<ol type="1">
<li>Create an <code>Accelerator</code></li>
</ol></li>
</ul>
</div>
<div style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%">
<div class="sourceCode" id="cb2"><pre class="sourceCode numberSource diff number-lines code-with-copy"><code class="sourceCode diff"><span id="cb2-1"><a href="#cb2-1"></a>  import torch</span>
<span id="cb2-2"><a href="#cb2-2"></a>  import torch.nn.functional as F</span>
<span id="cb2-3"><a href="#cb2-3"></a>  from datasets import load_dataset</span>
<span id="cb2-4"><a href="#cb2-4"></a><span class="va">+ from accelerate import Accelerator</span></span>
<span id="cb2-5"><a href="#cb2-5"></a></span>
<span id="cb2-6"><a href="#cb2-6"></a><span class="va">+ accelerator = Accelerator()</span></span>
<span id="cb2-7"><a href="#cb2-7"></a>  device = 'cpu'</span>
<span id="cb2-8"><a href="#cb2-8"></a></span>
<span id="cb2-9"><a href="#cb2-9"></a>  model = torch.nn.Transformer().to(device)</span>
<span id="cb2-10"><a href="#cb2-10"></a>  optimizer = torch.optim.Adam(model.parameters())</span>
<span id="cb2-11"><a href="#cb2-11"></a>  dataset = load_dataset('my_dataset')</span>
<span id="cb2-12"><a href="#cb2-12"></a>  data = torch.utils.data.DataLoader(dataset, shuffle=True)</span>
<span id="cb2-13"><a href="#cb2-13"></a></span>
<span id="cb2-14"><a href="#cb2-14"></a>  model.train()</span>
<span id="cb2-15"><a href="#cb2-15"></a>  for epoch in range(10):</span>
<span id="cb2-16"><a href="#cb2-16"></a>      for source, targets in dataloader:</span>
<span id="cb2-17"><a href="#cb2-17"></a>          source, targets = source.to(device), targets.to(device)</span>
<span id="cb2-18"><a href="#cb2-18"></a>          optimizer.zero_grad()</span>
<span id="cb2-19"><a href="#cb2-19"></a>          output = model(source)</span>
<span id="cb2-20"><a href="#cb2-20"></a>          loss = F.cross_entropy(output, targets)</span>
<span id="cb2-21"><a href="#cb2-21"></a>          loss.backward()</span>
<span id="cb2-22"><a href="#cb2-22"></a>          optimizer.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="easy-to-integrate-1" class="slide level2">
<h2>Easy to integrate</h2>
<div style="font-size: 70%;">
<ul>
<li>Due to the low-code nature, it’s trivial to integrate into existing PyTorch frameworks:
<ol start="2" type="1">
<li>Wrap your PyTorch objects with <code>accelerator.prepare</code> and remove device-placements</li>
</ol></li>
</ul>
</div>
<div style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%">
<div class="sourceCode" id="cb3"><pre class="sourceCode numberSource diff number-lines code-with-copy"><code class="sourceCode diff"><span id="cb3-1"><a href="#cb3-1"></a>  import torch</span>
<span id="cb3-2"><a href="#cb3-2"></a>  import torch.nn.functional as F</span>
<span id="cb3-3"><a href="#cb3-3"></a>  from datasets import load_dataset</span>
<span id="cb3-4"><a href="#cb3-4"></a>  from accelerate import Accelerator</span>
<span id="cb3-5"><a href="#cb3-5"></a></span>
<span id="cb3-6"><a href="#cb3-6"></a>  accelerator = Accelerator()</span>
<span id="cb3-7"><a href="#cb3-7"></a><span class="st">- device = 'cpu'</span></span>
<span id="cb3-8"><a href="#cb3-8"></a></span>
<span id="cb3-9"><a href="#cb3-9"></a>  model = torch.nn.Transformer().to(device)</span>
<span id="cb3-10"><a href="#cb3-10"></a>  optimizer = torch.optim.Adam(model.parameters())</span>
<span id="cb3-11"><a href="#cb3-11"></a>  dataset = load_dataset('my_dataset')</span>
<span id="cb3-12"><a href="#cb3-12"></a>  data = torch.utils.data.DataLoader(dataset, shuffle=True)</span>
<span id="cb3-13"><a href="#cb3-13"></a></span>
<span id="cb3-14"><a href="#cb3-14"></a><span class="va">+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)</span></span>
<span id="cb3-15"><a href="#cb3-15"></a></span>
<span id="cb3-16"><a href="#cb3-16"></a>  model.train()</span>
<span id="cb3-17"><a href="#cb3-17"></a>  for epoch in range(10):</span>
<span id="cb3-18"><a href="#cb3-18"></a>      for source, targets in dataloader:</span>
<span id="cb3-19"><a href="#cb3-19"></a>          source, targets = source.to(device), targets.to(device)</span>
<span id="cb3-20"><a href="#cb3-20"></a>          optimizer.zero_grad()</span>
<span id="cb3-21"><a href="#cb3-21"></a>          output = model(source)</span>
<span id="cb3-22"><a href="#cb3-22"></a>          loss = F.cross_entropy(output, targets)</span>
<span id="cb3-23"><a href="#cb3-23"></a>          loss.backward()</span>
<span id="cb3-24"><a href="#cb3-24"></a>          optimizer.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="easy-to-integrate-2" class="slide level2">
<h2>Easy to integrate</h2>
<div style="font-size: 70%;">
<ul>
<li>Due to the low-code nature, it’s trivial to integrate into existing PyTorch frameworks:
<ol start="3" type="1">
<li>Use <code>accelerator.backward</code> for the backward pass</li>
</ol></li>
</ul>
</div>
<div style="font-size: 60%;padding-left:15%;padding-top:0%;padding-right:20%">
<div class="sourceCode" id="cb4"><pre class="sourceCode numberSource diff number-lines code-with-copy"><code class="sourceCode diff"><span id="cb4-1"><a href="#cb4-1"></a>  import torch</span>
<span id="cb4-2"><a href="#cb4-2"></a>  import torch.nn.functional as F</span>
<span id="cb4-3"><a href="#cb4-3"></a>  from datasets import load_dataset</span>
<span id="cb4-4"><a href="#cb4-4"></a>  from accelerate import Accelerator</span>
<span id="cb4-5"><a href="#cb4-5"></a></span>
<span id="cb4-6"><a href="#cb4-6"></a>  accelerator = Accelerator()</span>
<span id="cb4-7"><a href="#cb4-7"></a></span>
<span id="cb4-8"><a href="#cb4-8"></a>  model = torch.nn.Transformer().to(device)</span>
<span id="cb4-9"><a href="#cb4-9"></a>  optimizer = torch.optim.Adam(model.parameters())</span>
<span id="cb4-10"><a href="#cb4-10"></a>  dataset = load_dataset('my_dataset')</span>
<span id="cb4-11"><a href="#cb4-11"></a>  data = torch.utils.data.DataLoader(dataset, shuffle=True)</span>
<span id="cb4-12"><a href="#cb4-12"></a></span>
<span id="cb4-13"><a href="#cb4-13"></a>  model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)</span>
<span id="cb4-14"><a href="#cb4-14"></a></span>
<span id="cb4-15"><a href="#cb4-15"></a>  model.train()</span>
<span id="cb4-16"><a href="#cb4-16"></a>  for epoch in range(10):</span>
<span id="cb4-17"><a href="#cb4-17"></a>      for source, targets in dataloader:</span>
<span id="cb4-18"><a href="#cb4-18"></a>          source, targets = source.to(device), targets.to(device)</span>
<span id="cb4-19"><a href="#cb4-19"></a>          optimizer.zero_grad()</span>
<span id="cb4-20"><a href="#cb4-20"></a>          output = model(source)</span>
<span id="cb4-21"><a href="#cb4-21"></a>          loss = F.cross_entropy(output, targets)</span>
<span id="cb4-22"><a href="#cb4-22"></a><span class="st">-         loss.backward()</span></span>
<span id="cb4-23"><a href="#cb4-23"></a><span class="va">+         accelerator.backward(loss)</span></span>
<span id="cb4-24"><a href="#cb4-24"></a>          optimizer.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="but-what-about-inference" class="slide level2">
<h2>But what about inference?</h2>
<ul>
<li>🤗 Accelerate is not just for training, and has helped make the GPU-Poor take control of the narrative</li>
<li>Using tools like Big Model Inference, users with <em>tiny</em> compute can run large models locally</li>
<li>Started with the boom of stable diffusion, and now has scaled to having the ability to run huge LLMs locally with a single graphics card</li>
</ul>
</section>
<section id="how-does-it-work" class="slide level2">
<h2>How does it work?</h2>
<ul>
<li>PyTorch introduced <code>device="meta"</code></li>
<li>🤗 Accelerate introduced <code>device_map="auto"</code></li>
</ul>
<div style="padding-left:15%;padding-right:20%">
<video id="video_shortcode_videojs_video1" width="800" height="400" class="video-js vjs-default-skin " controls="" preload="auto" data-setup="{}" title=""><source src="big_model_visualization.mp4"></video>
</div>
</section>
<section id="a-cli-interface" class="slide level2">
<h2>A CLI Interface</h2>
<ul>
<li><code>accelerate config</code>
<ul>
<li>Configure the environment</li>
</ul></li>
<li><code>accelerate launch</code>
<ul>
<li>How to run your script</li>
</ul></li>
</ul>
</section>
<section id="launching-distributed-training-is-hard" class="slide level2">
<h2>Launching distributed training is hard</h2>
<div style="padding-top:0%;padding-left:10%;padding-right:15%;padding-bottom:0%">
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div style="padding-left:50%;padding-bottom:0%;padding-top:0%;">
<p>vs.</p>
</div>
<p><br></p>
<div style="padding-top:0%;padding-left:10%;padding-right:15%;padding-bottom:0%">
<div class="sourceCode" id="cb6"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb6-1"><a href="#cb6-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div style="padding-left:50%;padding-bottom:0%;padding-top:0%;">
<p>vs.</p>
</div>
<p><br></p>
<div style="padding-top:0%;padding-left:10%;padding-right:15%;padding-bottom:0%">
<div class="sourceCode" id="cb7"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb7-1"><a href="#cb7-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p><br></p>
</div>
<p>How can we make this better?</p>
</section>
<section id="accelerate-launch" class="slide level2">
<h2><code>accelerate launch</code></h2>
<div style="padding-top:0%;padding-left:5%;padding-right:10%;padding-bottom:0%">
<div class="sourceCode" id="cb8"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb8-1"><a href="#cb8-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p><br></p>
<div class="sourceCode" id="cb9"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb9-1"><a href="#cb9-1"></a><span class="ex">accelerate</span> launch <span class="at">--multi_gpu</span> <span class="at">--num_processes</span> 2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p><br></p>
<div class="sourceCode" id="cb10"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb10-1"><a href="#cb10-1"></a><span class="ex">accelerate</span> launch <span class="dt">\</span></span>
<span id="cb10-2"><a href="#cb10-2"></a>  <span class="at">--multi_gpu</span> <span class="dt">\ </span></span>
<span id="cb10-3"><a href="#cb10-3"></a>  <span class="ex">--use_deepspeed</span> <span class="dt">\</span></span>
<span id="cb10-4"><a href="#cb10-4"></a>  <span class="at">--num_processes</span> 2 <span class="dt">\</span></span>
<span id="cb10-5"><a href="#cb10-5"></a>  script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="accelerate-config" class="slide level2">
<h2><code>accelerate config</code></h2>
<ul>
<li>Rely on <code>config.yaml</code> files</li>
<li>Choose to either running <code>accelerate config</code> or write your own:</li>
</ul>
<div class="columns" style="font-size: 60%;padding-left:5%;padding-right:5%">
<div class="column" style="width:40%;">
<div class="code-with-filename">
<div class="code-with-filename-file">
<pre><strong>ddp_config.yaml</strong></pre>
</div>
<div class="sourceCode" id="cb11"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb11-1"><a href="#cb11-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
<span id="cb11-2"><a href="#cb11-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> MULTI_GPU</span></span>
<span id="cb11-3"><a href="#cb11-3"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
<span id="cb11-4"><a href="#cb11-4"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
<span id="cb11-5"><a href="#cb11-5"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
<span id="cb11-6"><a href="#cb11-6"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div><div class="column" style="width:40%;">
<div class="code-with-filename">
<div class="code-with-filename-file">
<pre><strong>fsdp_config.yaml</strong></pre>
</div>
<div class="sourceCode" id="cb12"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb12-1"><a href="#cb12-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
<span id="cb12-2"><a href="#cb12-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> FSDP</span></span>
<span id="cb12-3"><a href="#cb12-3"></a><span class="fu">fsdp_config</span><span class="kw">:</span></span>
<span id="cb12-4"><a href="#cb12-4"></a><span class="at">  </span><span class="fu">fsdp_auto_wrap_policy</span><span class="kw">:</span><span class="at"> TRANSFORMER_BASED_WRAP</span></span>
<span id="cb12-5"><a href="#cb12-5"></a><span class="at">  </span><span class="fu">fsdp_backward_prefetch</span><span class="kw">:</span><span class="at"> BACKWARD_PRE</span></span>
<span id="cb12-6"><a href="#cb12-6"></a><span class="at">  </span><span class="fu">fsdp_cpu_ram_efficient_loading</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
<span id="cb12-7"><a href="#cb12-7"></a><span class="at">  </span><span class="fu">fsdp_forward_prefetch</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
<span id="cb12-8"><a href="#cb12-8"></a><span class="at">  </span><span class="fu">fsdp_offload_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
<span id="cb12-9"><a href="#cb12-9"></a><span class="at">  </span><span class="fu">fsdp_sharding_strategy</span><span class="kw">:</span><span class="at"> FULL_SHARD</span></span>
<span id="cb12-10"><a href="#cb12-10"></a><span class="at">  </span><span class="fu">fsdp_state_dict_type</span><span class="kw">:</span><span class="at"> SHARDED_STATE_DICT</span></span>
<span id="cb12-11"><a href="#cb12-11"></a><span class="at">  </span><span class="fu">fsdp_sync_module_states</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
<span id="cb12-12"><a href="#cb12-12"></a><span class="at">  </span><span class="fu">fsdp_use_orig_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
<span id="cb12-13"><a href="#cb12-13"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
<span id="cb12-14"><a href="#cb12-14"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
<span id="cb12-15"><a href="#cb12-15"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
<span id="cb12-16"><a href="#cb12-16"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div>
</section>
<section id="now-that-youre-up-to-speed-whats-new" class="title-slide slide level1 center">
<h1>Now that you’re up to speed, what’s new?</h1>

</section>

<section>
<section id="weve-had-a-busy-last-year-and-so-has-the-ml-community" class="title-slide slide level1 center">
<h1>We’ve had a busy last year, and so has the ML Community!</h1>

</section>
<section id="new-training-techniques" class="slide level2">
<h2>New training techniques</h2>
<ul>
<li>Quantization has taken the field by storm</li>
<li>New ideas such as FSDP + QLoRA to train huge models on tiny compute!</li>
<li>New precision backends as we train natively on smaller precision</li>
<li>Optimizing futher how much we can push on a single machine through efficient RAM and timing techniques</li>
</ul>
</section>
<section id="larger-compute-landscape" class="slide level2">
<h2>Larger compute landscape</h2>
<ul>
<li>As we search for alternatives to NVIDIA, new compilers rise:
<ul>
<li>XPU (Intel)</li>
<li>NPU (Intel)</li>
<li>MLU (Cambricon)</li>
</ul></li>
</ul>
<p>All of which are supported by 🤗 Accelerate</p>
</section>
<section id="lower-abstractions" class="slide level2">
<h2>Lower abstractions</h2>
<ul>
<li>While the <code>Accelerator</code> was great, needed better abstractions focused on controlling behaviors</li>
<li>Introduced the <code>PartialState</code></li>
</ul>
<div style="padding-left:10%;padding-top:0%;padding-right:15%">
<div class="sourceCode" id="cb13"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1"></a><span class="im">from</span> accelerate <span class="im">import</span> PartialState</span>
<span id="cb13-2"><a href="#cb13-2"></a></span>
<span id="cb13-3"><a href="#cb13-3"></a><span class="cf">if</span> PartialState().is_main_process:</span>
<span id="cb13-4"><a href="#cb13-4"></a>  <span class="co"># Run on only 1 device</span></span>
<span id="cb13-5"><a href="#cb13-5"></a></span>
<span id="cb13-6"><a href="#cb13-6"></a><span class="cf">with</span> PartialState().main_process_first:</span>
<span id="cb13-7"><a href="#cb13-7"></a>  <span class="co"># Useful for dataset processing</span></span>
<span id="cb13-8"><a href="#cb13-8"></a></span>
<span id="cb13-9"><a href="#cb13-9"></a><span class="co"># Device-agnostic without the bulk of the `Accelerator`</span></span>
<span id="cb13-10"><a href="#cb13-10"></a>device <span class="op">=</span> PartialState().device</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="faster-and-better-inference-alternatives" class="slide level2">
<h2>Faster and better inference alternatives</h2>
<div style="font-size:70%">
<ul>
<li><code>PiPPy</code> gives us efficient pipeline-parallelism in distributed environments to increase throughput while keeping a simple torch-bound API</li>
<li>Rather than having to wait for each GPU, every GPU can be busy in parallel</li>
<li>Will be critical as larger LLMs take hold and more than one computer is needed</li>
</ul>
</div>
<div style="font-size:60%;padding-left:19%;padding-top:0%;padding-right:24%;">
<div class="sourceCode" id="cb14"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1"></a><span class="im">import</span> torch</span>
<span id="cb14-2"><a href="#cb14-2"></a><span class="im">from</span> transformers <span class="im">import</span> AutoModelForSequenceClassification</span>
<span id="cb14-3"><a href="#cb14-3"></a></span>
<span id="cb14-4"><a href="#cb14-4"></a><span class="im">from</span> accelerate <span class="im">import</span> PartialState, prepare_pippy</span>
<span id="cb14-5"><a href="#cb14-5"></a></span>
<span id="cb14-6"><a href="#cb14-6"></a>model <span class="op">=</span> AutoModelForSequenceClassification.from_pretrained(<span class="st">"gpt2"</span>)</span>
<span id="cb14-7"><a href="#cb14-7"></a>model.<span class="bu">eval</span>()</span>
<span id="cb14-8"><a href="#cb14-8"></a></span>
<span id="cb14-9"><a href="#cb14-9"></a><span class="bu">input</span> <span class="op">=</span> torch.randint(</span>
<span id="cb14-10"><a href="#cb14-10"></a>    low<span class="op">=</span><span class="dv">0</span>,</span>
<span id="cb14-11"><a href="#cb14-11"></a>    high<span class="op">=</span>model.config.vocab_size,</span>
<span id="cb14-12"><a href="#cb14-12"></a>    size<span class="op">=</span>(<span class="dv">2</span>, <span class="dv">1024</span>),  <span class="co"># bs x seq_len</span></span>
<span id="cb14-13"><a href="#cb14-13"></a>    device<span class="op">=</span><span class="st">"cpu"</span>,</span>
<span id="cb14-14"><a href="#cb14-14"></a>)</span>
<span id="cb14-15"><a href="#cb14-15"></a></span>
<span id="cb14-16"><a href="#cb14-16"></a>model <span class="op">=</span> prepare_pippy(model, split_points<span class="op">=</span><span class="st">"auto"</span>, example_args<span class="op">=</span>(<span class="bu">input</span>,))</span>
<span id="cb14-17"><a href="#cb14-17"></a></span>
<span id="cb14-18"><a href="#cb14-18"></a><span class="cf">with</span> torch.no_grad():</span>
<span id="cb14-19"><a href="#cb14-19"></a>    output <span class="op">=</span> model(<span class="bu">input</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section></section>
<section>
<section id="adoption-accelerate-in-the-ecosystem" class="title-slide slide level1 center">
<h1>Adoption: Accelerate in the ecosystem</h1>

</section>
<section id="accelerate-in-the-ecosystem" class="slide level2">
<h2>Accelerate in the Ecosystem</h2>
<ul>
<li>Many of the frameworks you use daily already rely on 🤗 Accelerate!
<ul>
<li>Nearly all of 🤗</li>
<li><code>axolotl</code></li>
<li><code>fastai</code></li>
<li><code>FastChat</code></li>
<li><code>lucidrains</code></li>
<li><code>kornia</code></li>
</ul></li>
</ul>
</section>
<section id="accelerate-in-the-ecosystem-1" class="slide level2">
<h2>Accelerate in the Ecosystem</h2>
<div style="font-size: 70%;">
<ul>
<li>Started as a way to isolate out distributed code on TPU and <code>DistributedDataParallelism</code></li>
</ul>
</div>
<div style="padding-left: 30%">
<p><img data-src="sylvain_tweet.JPG" style="width:70.0%"></p>
</div>
</section>
<section id="accelerate-in-the-ecosystem-2" class="slide level2">
<h2>Accelerate in the Ecosystem</h2>
<div style="font-size: 70%;">
<ul>
<li>Now is the backbone of some of the largest PyTorch training frameworks in the ecosystem</li>
</ul>
</div>
<div style="padding-left: 30%;">
<p><img data-src="hf_trainer.JPG" style="width:70.0%"></p>
</div>
</section></section>
<section id="whats-next" class="title-slide slide level1 center">
<h1>What’s next?</h1>

</section>

<section id="elevating-the-community" class="title-slide slide level1 center">
<h1>Elevating the community</h1>
<ul>
<li>Now that more advanced training techniques are reachable (FSDP, DeepSpeed, etc), we need to focus on educating the community on how to use it best</li>
<li>Goes beyond how to use the <code>Trainer</code> or <code>Accelerator</code>, but how to use <em>what</em> where</li>
<li>Keep Accelerate as a tool for the community to utilize when new techniques come out and play with, to push new ideas to scale quickly</li>
</ul>
</section>

<section id="soon" class="title-slide slide level1 center">
<h1>1.0.0: Soon!</h1>
<ul>
<li>Tried and battle-tested by over 7M users/month | 110M+ total downloads</li>
<li>As we’ve been stable for over a year now, we’re near ready to release 1.0.0</li>
</ul>
</section>

<section id="thanks-for-joining" class="title-slide slide level1 center">
<h1>Thanks for joining!</h1>
<div style="font-size: 70%;">
<ul>
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li>
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
<li><a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">FSDP vs DeepSpeed In-Depth</a></li>
</ul>
</div>
<div class="footer footer-default">

</div>
</section>
    </div>
  </div>

  <script>window.backupDefine = window.define; window.define = undefined;</script>
  <script src="accelerate_files/libs/revealjs/dist/reveal.js"></script>
  <!-- reveal.js plugins -->
  <script src="accelerate_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
  <script src="accelerate_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
  <script src="accelerate_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
  <script src="accelerate_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
  <script src="accelerate_files/libs/revealjs/plugin/quarto-support/support.js"></script>
  

  <script src="accelerate_files/libs/revealjs/plugin/notes/notes.js"></script>
  <script src="accelerate_files/libs/revealjs/plugin/search/search.js"></script>
  <script src="accelerate_files/libs/revealjs/plugin/zoom/zoom.js"></script>
  <script src="accelerate_files/libs/revealjs/plugin/math/math.js"></script>
  <script>window.define = window.backupDefine; window.backupDefine = undefined;</script>

  <script>

      // Full list of configuration options available at:
      // https://revealjs.com/config/
      Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'smaller': false,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'smaller': false,
 
        // Display controls in the bottom right corner
        controls: false,

        // Help the user learn the controls by providing hints, for example by
        // bouncing the down arrow when they first encounter a vertical slide
        controlsTutorial: false,

        // Determines where controls appear, "edges" or "bottom-right"
        controlsLayout: 'edges',

        // Visibility rule for backwards navigation arrows; "faded", "hidden"
        // or "visible"
        controlsBackArrows: 'faded',

        // Display a presentation progress bar
        progress: true,

        // Display the page number of the current slide
        slideNumber: false,

        // 'all', 'print', or 'speaker'
        showSlideNumber: 'all',

        // Add the current slide number to the URL hash so that reloading the
        // page/copying the URL will return you to the same slide
        hash: true,

        // Start with 1 for the hash rather than 0
        hashOneBasedIndex: false,

        // Flags if we should monitor the hash and change slides accordingly
        respondToHashChanges: true,

        // Push each slide change to the browser history
        history: true,

        // Enable keyboard shortcuts for navigation
        keyboard: true,

        // Enable the slide overview mode
        overview: true,

        // Disables the default reveal.js slide layout (scaling and centering)
        // so that you can use custom CSS layout
        disableLayout: false,

        // Vertical centering of slides
        center: false,

        // Enables touch navigation on devices with touch input
        touch: true,

        // Loop the presentation
        loop: false,

        // Change the presentation direction to be RTL
        rtl: false,

        // see https://revealjs.com/vertical-slides/#navigation-mode
        navigationMode: 'linear',

        // Randomizes the order of slides each time the presentation loads
        shuffle: false,

        // Turns fragments on and off globally
        fragments: true,

        // Flags whether to include the current fragment in the URL,
        // so that reloading brings you to the same fragment position
        fragmentInURL: false,

        // Flags if the presentation is running in an embedded mode,
        // i.e. contained within a limited portion of the screen
        embedded: false,

        // Flags if we should show a help overlay when the questionmark
        // key is pressed
        help: true,

        // Flags if it should be possible to pause the presentation (blackout)
        pause: true,

        // Flags if speaker notes should be visible to all viewers
        showNotes: false,

        // Global override for autoplaying embedded media (null/true/false)
        autoPlayMedia: true,

        // Global override for preloading lazy-loaded iframes (null/true/false)
        preloadIframes: null,

        // Number of milliseconds between automatically proceeding to the
        // next slide, disabled when set to 0, this value can be overwritten
        // by using a data-autoslide attribute on your slides
        autoSlide: 0,

        // Stop auto-sliding after user input
        autoSlideStoppable: true,

        // Use this method for navigation when auto-sliding
        autoSlideMethod: null,

        // Specify the average time in seconds that you think you will spend
        // presenting each slide. This is used to show a pacing timer in the
        // speaker view
        defaultTiming: null,

        // Enable slide navigation via mouse wheel
        mouseWheel: false,

        // The display mode that will be used to show slides
        display: 'block',

        // Hide cursor if inactive
        hideInactiveCursor: true,

        // Time before the cursor is hidden (in ms)
        hideCursorTime: 5000,

        // Opens links in an iframe preview overlay
        previewLinks: false,

        // Transition style (none/fade/slide/convex/concave/zoom)
        transition: 'none',

        // Transition speed (default/fast/slow)
        transitionSpeed: 'default',

        // Transition style for full page slide backgrounds
        // (none/fade/slide/convex/concave/zoom)
        backgroundTransition: 'none',

        // Number of slides away from the current that are visible
        viewDistance: 3,

        // Number of slides away from the current that are visible on mobile
        // devices. It is advisable to set this to a lower number than
        // viewDistance in order to save resources.
        mobileViewDistance: 2,

        // The "normal" size of the presentation, aspect ratio will be preserved
        // when the presentation is scaled to fit different resolutions. Can be
        // specified using percentage units.
        width: 1050,

        height: 700,

        // Factor of the display size that should remain empty around the content
        margin: 0.1,

        math: {
          mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
          config: 'TeX-AMS_HTML-full',
          tex2jax: {
            inlineMath: [['\\(','\\)']],
            displayMath: [['\\[','\\]']],
            balanceBraces: true,
            processEscapes: false,
            processRefs: true,
            processEnvironments: true,
            preview: 'TeX',
            skipTags: ['script','noscript','style','textarea','pre','code'],
            ignoreClass: 'tex2jax_ignore',
            processClass: 'tex2jax_process'
          },
        },

        // reveal.js plugins
        plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,

          RevealMath,
          RevealNotes,
          RevealSearch,
          RevealZoom
        ]
      });
    </script>
    <script id="quarto-html-after-body" type="application/javascript">
    window.document.addEventListener("DOMContentLoaded", function (event) {
      const toggleBodyColorMode = (bsSheetEl) => {
        const mode = bsSheetEl.getAttribute("data-mode");
        const bodyEl = window.document.querySelector("body");
        if (mode === "dark") {
          bodyEl.classList.add("quarto-dark");
          bodyEl.classList.remove("quarto-light");
        } else {
          bodyEl.classList.add("quarto-light");
          bodyEl.classList.remove("quarto-dark");
        }
      }
      const toggleBodyColorPrimary = () => {
        const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
        if (bsSheetEl) {
          toggleBodyColorMode(bsSheetEl);
        }
      }
      toggleBodyColorPrimary();  
      const tabsets =  window.document.querySelectorAll(".panel-tabset-tabby")
      tabsets.forEach(function(tabset) {
        const tabby = new Tabby('#' + tabset.id);
      });
      const isCodeAnnotation = (el) => {
        for (const clz of el.classList) {
          if (clz.startsWith('code-annotation-')) {                     
            return true;
          }
        }
        return false;
      }
      const clipboard = new window.ClipboardJS('.code-copy-button', {
        text: function(trigger) {
          const codeEl = trigger.previousElementSibling.cloneNode(true);
          for (const childEl of codeEl.children) {
            if (isCodeAnnotation(childEl)) {
              childEl.remove();
            }
          }
          return codeEl.innerText;
        }
      });
      clipboard.on('success', function(e) {
        // button target
        const button = e.trigger;
        // don't keep focus
        button.blur();
        // flash "checked"
        button.classList.add('code-copy-button-checked');
        var currentTitle = button.getAttribute("title");
        button.setAttribute("title", "Copied!");
        let tooltip;
        if (window.bootstrap) {
          button.setAttribute("data-bs-toggle", "tooltip");
          button.setAttribute("data-bs-placement", "left");
          button.setAttribute("data-bs-title", "Copied!");
          tooltip = new bootstrap.Tooltip(button, 
            { trigger: "manual", 
              customClass: "code-copy-button-tooltip",
              offset: [0, -8]});
          tooltip.show();    
        }
        setTimeout(function() {
          if (tooltip) {
            tooltip.hide();
            button.removeAttribute("data-bs-title");
            button.removeAttribute("data-bs-toggle");
            button.removeAttribute("data-bs-placement");
          }
          button.setAttribute("title", currentTitle);
          button.classList.remove('code-copy-button-checked');
        }, 1000);
        // clear code selection
        e.clearSelection();
      });
      function tippyHover(el, contentFn) {
        const config = {
          allowHTML: true,
          content: contentFn,
          maxWidth: 500,
          delay: 100,
          arrow: false,
          appendTo: function(el) {
              return el.closest('section.slide') || el.parentElement;
          },
          interactive: true,
          interactiveBorder: 10,
          theme: 'light-border',
          placement: 'bottom-start'
        };
          config['offset'] = [0,0];
          config['maxWidth'] = 700;
        window.tippy(el, config); 
      }
      const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
      for (var i=0; i<noterefs.length; i++) {
        const ref = noterefs[i];
        tippyHover(ref, function() {
          // use id or data attribute instead here
          let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
          try { href = new URL(href).hash; } catch {}
          const id = href.replace(/^#\/?/, "");
          const note = window.document.getElementById(id);
          return note.innerHTML;
        });
      }
      const findCites = (el) => {
        const parentEl = el.parentElement;
        if (parentEl) {
          const cites = parentEl.dataset.cites;
          if (cites) {
            return {
              el,
              cites: cites.split(' ')
            };
          } else {
            return findCites(el.parentElement)
          }
        } else {
          return undefined;
        }
      };
      var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
      for (var i=0; i<bibliorefs.length; i++) {
        const ref = bibliorefs[i];
        const citeInfo = findCites(ref);
        if (citeInfo) {
          tippyHover(citeInfo.el, function() {
            var popup = window.document.createElement('div');
            citeInfo.cites.forEach(function(cite) {
              var citeDiv = window.document.createElement('div');
              citeDiv.classList.add('hanging-indent');
              citeDiv.classList.add('csl-entry');
              var biblioDiv = window.document.getElementById('ref-' + cite);
              if (biblioDiv) {
                citeDiv.innerHTML = biblioDiv.innerHTML;
              }
              popup.appendChild(citeDiv);
            });
            return popup.innerHTML;
          });
        }
      }
    });
    </script>
    
    

</body></html>